On Aerodynamic and Aeroelastic Modeling for Aircraft Design

The work presented in this thesis was performed with the aim of developing improved prediction methods for aerodynamic and aeroelastic analysis to be used in aircraft design. The first part of the thesis concerns the development of a viscous-inviscid interaction model for steady aerodynamic predicti...

Full description

Bibliographic Details
Main Author: Lokatt, Mikaela
Format: Doctoral Thesis
Language:English
Published: KTH, Flygdynamik 2017
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212051
http://nbn-resolving.de/urn:isbn:978-91-7729-480-1
Description
Summary:The work presented in this thesis was performed with the aim of developing improved prediction methods for aerodynamic and aeroelastic analysis to be used in aircraft design. The first part of the thesis concerns the development of a viscous-inviscid interaction model for steady aerodynamic predictions. Since an inviscid, potential flow, model already is available, the main focus is on the development of a viscous model consisting of a three-dimensional integral boundary layer model. The performance of the viscous-inviscid interaction model is evaluated and it is found that the accuracy of the predictions as well as the computational cost appear to be acceptable for the intended application. The presented work also includes an experimental study aimed at analyzing steady and unsteady aerodynamic characteristics of a laminar flow wing model. An enhanced understanding of these characteristics is presumed to be useful for the development of improved aerodynamic prediction models. A combination of nearly linear as well as clearly nonlinear aerodynamic variations are observed in the steady as well as in the unsteady experimental results and it is discussed how these may relate to boundary layer properties as well as to aeroelastic stability characteristics. Aeroelastic considerations are receiving additional attention in the thesis, as a method for prediction of how flutter characteristics are affected by modeling uncertainties is part of the presented material. The analysis method provides an efficient alternative for obtaining increased information about, as well as enhanced understanding of, aeroelastic stability characteristics. === <p>QC 20170816</p>