Small Cohort Population Forecasting via Bayesian Learning

A set of distributional assumptions regarding the demographic processes of birth, death, emigration and immigration have been assembled to form a probabilistic model framework of population dynamics. This framework was summarized as a Bayesian network and Bayesian inference techniques are exploited...

Full description

Bibliographic Details
Main Author: Vallin, Simon
Format: Others
Language:English
Published: KTH, Matematisk statistik 2017
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209274
Description
Summary:A set of distributional assumptions regarding the demographic processes of birth, death, emigration and immigration have been assembled to form a probabilistic model framework of population dynamics. This framework was summarized as a Bayesian network and Bayesian inference techniques are exploited to infer the posterior distributions of the model parameters from observed data. The birth, death and emigration processes are modelled using a hierarchical beta-binomial model from which the inference of the posterior parameter distribution was analytically tractable. The immigration process was modelled with a Poisson type regression model where posterior distribution of the parameters has to be estimated numerically. This thesis suggests an implementation of the Metropolis-Hasting algorithm for this task. Classifi cation of incomings into subpopulations of age and gender is subsequently made using a Dirichlet-multinomial hierarchic model, for which parameter inference is analytically tractable. This model framework is used to generate forecasts of demographic data, which can be validated using the observed outcomes. A key component of the Bayesian model framework used is that is estimates the full posterior distributions of demographic data, which can take into account the full amount of uncertainty when forecasting population growths. === Genom att använda en mängd av distributionella antaganden om de demografiska processerna födsel, dödsfall, utflyttning och inflyttning har vi byggt ett stokastiskt ramverk för att modellera befolkningsförändringar. Ramverket kan sammanfattas som ett Bayesianskt nätverk och för detta nätverk introduceras tekniker för att skatta parametrar i denna uppsats. Födsel, dödsfall och utflyttning modelleras av en hierarkisk beta-binomialmodell där parametrarnas posteriorifördelning kan skattas analytiskt från data. För inflyttning används en regressionsmodell av Poissontyp där parametervärdenas posteriorifördelning måste skattas numeriskt. Vi föreslår en implementation av Metropolis-Hastingsalgoritmen för detta. Klassificering av subpopulationer hos de inflyttande sker via en hierarkisk Dirichlet-multinomialmodell där parameterskattning sker analytiskt. Ramverket användes för att göra prognoser för tidigare demografisk data, vilka validerades med de faktiska utfallen. En av modellens huvudsakliga styrkor är att kunna skatta en prediktiv fördelning för demografisk data, vilket ger en mer nyanserad pronos än en enkel maximum-likelihood-skattning.