Summary: | This master thesis is performed in collaboration with Maquet Critical Care, Solna, Sweden. Maquet Critical Care is one of the leading ventilation and anesthesia machine producers in the world. The purpose of this master thesis is to investigate the feasibility of a new concept of gas mixing valve, namely "a valve with reversed flow". This valve is more energy efficient, inherently safer and has possibly lower cost than regular valves used currently in medical ventilators. The thesis is mainly divided into three parts. First, preliminary experiments were made to understand the force and flow characteristics of the valve with the reversed flow. A valve structure, on which reversed flow can be applied, was designed for these experiments. Secondly, SolidWorks flow simulations were made to decide the diameter of the valve seat. A mathematical model was developed to represent the valve system and validated with the valve prototype produced for the preliminary experiments. Finally, a PI flow feedback controller was designed to test the controllability of this valve. The controller was implemented both in the simulation environment and on a real valve. The results of the experiments reveal that the valve with reversed flow is feasible for the use in medical ventilators. === Detta examensarbete är utfört i samarbete med Maquet Critical Care i Solna, Sverige, en av de ledande tillverkarna av anestesimaskiner och ventilatorer i världen. Syftet med denna examensarbete är att undersöka om iden med en flödesreverserad ventil är möjlig för användning som en gasmixningsventil. Denna ventil är energisnålare, säkrare och möjligtvis billigare än de ventiler som vanligtvis används i medicinska ventilatorer. Rapporten är uppdelad i tre delar. Den första delen beskriver preliminära tester som har gjorts för att förstå flöde och kraftkarakteristiken för en ventil med reverserat flöde. En ventil med reverserat flöde har tagits fram för att kunna göra dessa experiment. I den andra delen har flöodessimuleringar utförts i Solidworks för att bestämma diametern på ventil sätet. Därefter har en matematisk modell skapats för ventilsystemet som har validerats mot experimenten från den första delen. Slutligen har en PI-flödesregulator tagits fram för att påvisa kontrollerbarheten av ventilen. Regulatorn har implementerats både i den simulerade miljön och i form av en fysisk ventil. Resultaten visar att en ventil med reverserat flöde är en skulle kunna användas i ventilatorer för kliniskt bruk.
|