Evaluating mobile edge-computing on base stations : Case study of a sign recognition application

Mobile phones have evolved from feature phones to smart phones with processing power that can compete with personal computers ten years ago. Nevertheless, the computing power of personal computers has also multiplied in the past decade. Consequently, the gap between mobile platforms and personal com...

Full description

Bibliographic Details
Main Author: Castellanos Nájera, Eduardo
Format: Others
Language:English
Published: KTH, Skolan för informations- och kommunikationsteknik (ICT) 2015
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186712
id ndltd-UPSALLA1-oai-DiVA.org-kth-186712
record_format oai_dc
collection NDLTD
language English
format Others
sources NDLTD
topic mobile cloud
mobile-edge computing
image recognition
edge-cloud
Computer and Information Sciences
Data- och informationsvetenskap
spellingShingle mobile cloud
mobile-edge computing
image recognition
edge-cloud
Computer and Information Sciences
Data- och informationsvetenskap
Castellanos Nájera, Eduardo
Evaluating mobile edge-computing on base stations : Case study of a sign recognition application
description Mobile phones have evolved from feature phones to smart phones with processing power that can compete with personal computers ten years ago. Nevertheless, the computing power of personal computers has also multiplied in the past decade. Consequently, the gap between mobile platforms and personal computers and servers still exists. Mobile Cloud Computing (MCC) has emerged as a paradigm that leverages this difference in processing power. It achieve this goal by augmenting smart phones with resources from the cloud, including processing power and storage capacity. Recently, Mobile Edge Computing (MEC) has brought the benefits from MCC one hop away from the end user. Furthermore, it also provides additional advantages, e.g., access to network context information, reduced latency, and location awareness. This thesis explores the advantages provided by MEC in practice by augmenting an existing application called Human-Centric Positioning System (HoPS). HoPS is a system that relies on context information and information extracted from a photograph of signposts to estimate a user's location. This thesis presents the challenges of enabling HoPS in practice, and implement strategies that make use of the advantages provided by MEC to tackle the challenges. Afterwards, it presents an evaluation of the resulting system, and discusses the implications of the results. To summarise, we make three primary contributions in this thesis: (1) we find out that it is possible to augment HoPS and improve its response time by a factor of four by offloading the code processing; (2) we can improve the overall accuracy of HoPS by leveraging additional processing power at the MEC; (3) we observe that improved network conditions can lead to reduced response time, nevertheless, the difference becomes insignificant compared with the heavy processing required. === Utvecklingen av mobiltelefoner har skett på en rusande takt. Dagens smartphones har mer processorkraft än vad stationära datorer hade för tio år sen. Samtidigt så har även datorernas processorer blivit mycket starkare. Därmed så finns det fortfarande klyftor mellan mobil plattform och datorer och servrar. Mobile Cloud Computing (MCC) används idag som en hävstång för de olika plattformernas processorkraft. Den uppnår detta genom att förbättra smartphonens processorkraft och datorminne med hjälp från datormolnet. På sistånde så har Mobile Edge Computing (MEC) gjort så att förmånerna med MCC är ett steg ifrån slutanvändaren. Dessutom så finns det andra fördelar med MEC, till exempel tillgång till nätverkssammanhangsinformation, reducerad latens, och platsmedvetenhet. Denna tes utforskar de praktiska fördelarna med MEC genom att använda tillämpningsprogrammet Human-Centric Positioning System (HoPS). HoPS är ett system som försöker att hitta platsen där användaren befinner sig på genom att använda sammanhängande information samt information från bilder med vägvisare. Tesen presenterar även de hinder som kan uppstå när HoPS implementeras i verkligheten, och använder förmåner från MEC för att hitta lösningar till eventuella hinder. Sedan så utvärderar och diskuterar tesen det resulterande systemet. För att sammanfatta så består tesen av tre huvuddelar: (1) vi tar reda på att det är möjligt att förbättra HoPS och minska svarstiden med en fjärdedel genom att avlasta kodsprocessen; (2) vi tar reda på att man kan generellt förbättra HoPS noggrannhet genom att använda den utökade processorkraften från MEC; (3) vi ser att förbättrade nätverksförutsättningar kan leda till minskad svarstid, dock så är skillnaden försumbar jämfört med hur mycket bearbetning av information som krävs.
author Castellanos Nájera, Eduardo
author_facet Castellanos Nájera, Eduardo
author_sort Castellanos Nájera, Eduardo
title Evaluating mobile edge-computing on base stations : Case study of a sign recognition application
title_short Evaluating mobile edge-computing on base stations : Case study of a sign recognition application
title_full Evaluating mobile edge-computing on base stations : Case study of a sign recognition application
title_fullStr Evaluating mobile edge-computing on base stations : Case study of a sign recognition application
title_full_unstemmed Evaluating mobile edge-computing on base stations : Case study of a sign recognition application
title_sort evaluating mobile edge-computing on base stations : case study of a sign recognition application
publisher KTH, Skolan för informations- och kommunikationsteknik (ICT)
publishDate 2015
url http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186712
work_keys_str_mv AT castellanosnajeraeduardo evaluatingmobileedgecomputingonbasestationscasestudyofasignrecognitionapplication
_version_ 1718604320200458240
spelling ndltd-UPSALLA1-oai-DiVA.org-kth-1867122018-01-11T05:11:49ZEvaluating mobile edge-computing on base stations : Case study of a sign recognition applicationengCastellanos Nájera, EduardoKTH, Skolan för informations- och kommunikationsteknik (ICT)2015mobile cloudmobile-edge computingimage recognitionedge-cloudComputer and Information SciencesData- och informationsvetenskapMobile phones have evolved from feature phones to smart phones with processing power that can compete with personal computers ten years ago. Nevertheless, the computing power of personal computers has also multiplied in the past decade. Consequently, the gap between mobile platforms and personal computers and servers still exists. Mobile Cloud Computing (MCC) has emerged as a paradigm that leverages this difference in processing power. It achieve this goal by augmenting smart phones with resources from the cloud, including processing power and storage capacity. Recently, Mobile Edge Computing (MEC) has brought the benefits from MCC one hop away from the end user. Furthermore, it also provides additional advantages, e.g., access to network context information, reduced latency, and location awareness. This thesis explores the advantages provided by MEC in practice by augmenting an existing application called Human-Centric Positioning System (HoPS). HoPS is a system that relies on context information and information extracted from a photograph of signposts to estimate a user's location. This thesis presents the challenges of enabling HoPS in practice, and implement strategies that make use of the advantages provided by MEC to tackle the challenges. Afterwards, it presents an evaluation of the resulting system, and discusses the implications of the results. To summarise, we make three primary contributions in this thesis: (1) we find out that it is possible to augment HoPS and improve its response time by a factor of four by offloading the code processing; (2) we can improve the overall accuracy of HoPS by leveraging additional processing power at the MEC; (3) we observe that improved network conditions can lead to reduced response time, nevertheless, the difference becomes insignificant compared with the heavy processing required. Utvecklingen av mobiltelefoner har skett på en rusande takt. Dagens smartphones har mer processorkraft än vad stationära datorer hade för tio år sen. Samtidigt så har även datorernas processorer blivit mycket starkare. Därmed så finns det fortfarande klyftor mellan mobil plattform och datorer och servrar. Mobile Cloud Computing (MCC) används idag som en hävstång för de olika plattformernas processorkraft. Den uppnår detta genom att förbättra smartphonens processorkraft och datorminne med hjälp från datormolnet. På sistånde så har Mobile Edge Computing (MEC) gjort så att förmånerna med MCC är ett steg ifrån slutanvändaren. Dessutom så finns det andra fördelar med MEC, till exempel tillgång till nätverkssammanhangsinformation, reducerad latens, och platsmedvetenhet. Denna tes utforskar de praktiska fördelarna med MEC genom att använda tillämpningsprogrammet Human-Centric Positioning System (HoPS). HoPS är ett system som försöker att hitta platsen där användaren befinner sig på genom att använda sammanhängande information samt information från bilder med vägvisare. Tesen presenterar även de hinder som kan uppstå när HoPS implementeras i verkligheten, och använder förmåner från MEC för att hitta lösningar till eventuella hinder. Sedan så utvärderar och diskuterar tesen det resulterande systemet. För att sammanfatta så består tesen av tre huvuddelar: (1) vi tar reda på att det är möjligt att förbättra HoPS och minska svarstiden med en fjärdedel genom att avlasta kodsprocessen; (2) vi tar reda på att man kan generellt förbättra HoPS noggrannhet genom att använda den utökade processorkraften från MEC; (3) vi ser att förbättrade nätverksförutsättningar kan leda till minskad svarstid, dock så är skillnaden försumbar jämfört med hur mycket bearbetning av information som krävs. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186712TRITA-ICT-EX ; 2015:205application/pdfinfo:eu-repo/semantics/openAccess