Biomechanics of Arterial Smooth Muscle. : - Analyzing vascular adaptation of large elastic arteries using in vitro experiments and 3D finite element modeling.

A number of cardiovascular diseases (e.g. aortic aneurysm, aortic dissection and atherosclerosis) are associated with altered biomechanical properties in the vascular wall. This thesis studies vascular adaptation and its resulting alteration in biomechanical properties. Vascular adaptation refers to...

Full description

Bibliographic Details
Main Author: Lewin, Susanne
Format: Others
Language:English
Published: KTH, Hållfasthetslära (Inst.) 2014
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-176406
id ndltd-UPSALLA1-oai-DiVA.org-kth-176406
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-kth-1764062015-11-05T04:46:19ZBiomechanics of Arterial Smooth Muscle. : - Analyzing vascular adaptation of large elastic arteries using in vitro experiments and 3D finite element modeling.engLewin, SusanneKTH, Hållfasthetslära (Inst.)2014A number of cardiovascular diseases (e.g. aortic aneurysm, aortic dissection and atherosclerosis) are associated with altered biomechanical properties in the vascular wall. This thesis studies vascular adaptation and its resulting alteration in biomechanical properties. Vascular adaptation refers to alterations in the vascular wall as a response to changes in its environment. This process can be examined through in vitro experiments on isolated blood vessels. Previous studies have shown that adaptation in arteries is induced by alterations in blood pressure. However, not much is known about the adaptation of smooth muscle cells and its resulting effects on the active tone. In order to verify previously obtained results on smooth muscle cell adaptation, in vitro experiments were conducted in this project. The in vitro experiments were conducted in a myograph on mice descending thoracic aorta. The experiments included a three-hour adaptation where the samples were contracted using an agonist at optimal stretch, or at a stretch lower than the optimal stretch. Concurring with the previous study, a decrease around 20% in active tone was observed after adaptation on low stretch. Based on the experimental data a constitutive framework was developed, which allows numerical studies on vascular adaptation of the active tone. Subsequently, the constitutive framework was implemented into the FEM software ABAQUS, and a thickwalled 3D artery was analyzed. By implementing the model in a FEM software, a platform for solving more complex boundary value problems has been created, and more challenging boundary conditions can be studied. Många hjärt- och kärlsjukdomar (t.ex. aortaaneurysm, aortadissektion och ateroskleros) sammanfaller med förändrade biomekaniska egenskaper i kärlväggen. Detta examensarbet undersöker vaskulär adaptation, samt biomekaniska egenskaper som detta medför. Vaskulär adaptation avser anpassningar i blodkärlsväggen som orsakats av en förändring i  kärlväggens omgivning. Detta kan studeras genom in vitro-experiment på isolerade blodkärl. Tidigare studier har visat att adaptation i blodkärl uppkommer till följd av förändrat blodtryck. Studierna om adaptation behandlar oftast det passiva materialet i kärlväggen. Det är därför mindre känt hur de glatta muskelcellerna adapteras. Tidigare projekt har behandlat vaskulär adaptation och hur det påverkas av mekanisk stretch (Bakker m.fl. 2004 och Tuna m.fl. 2013). Murtada m.fl. (pågående) har visat att adaptation på låg stretch medför en minskning av den aktiva tonen, samt att den ökar vid hög stretch. För att testa tidigare resultat utfördes in vitroexperiment på aorta från möss. Data från experimenten användes för att anpassa en matematisk modell som modellerar beteendet av kärlväggen. Avslutningsvis implementerades det konstitutiva ramverket i FEM-mjukvaran ABAQUS. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-176406application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
description A number of cardiovascular diseases (e.g. aortic aneurysm, aortic dissection and atherosclerosis) are associated with altered biomechanical properties in the vascular wall. This thesis studies vascular adaptation and its resulting alteration in biomechanical properties. Vascular adaptation refers to alterations in the vascular wall as a response to changes in its environment. This process can be examined through in vitro experiments on isolated blood vessels. Previous studies have shown that adaptation in arteries is induced by alterations in blood pressure. However, not much is known about the adaptation of smooth muscle cells and its resulting effects on the active tone. In order to verify previously obtained results on smooth muscle cell adaptation, in vitro experiments were conducted in this project. The in vitro experiments were conducted in a myograph on mice descending thoracic aorta. The experiments included a three-hour adaptation where the samples were contracted using an agonist at optimal stretch, or at a stretch lower than the optimal stretch. Concurring with the previous study, a decrease around 20% in active tone was observed after adaptation on low stretch. Based on the experimental data a constitutive framework was developed, which allows numerical studies on vascular adaptation of the active tone. Subsequently, the constitutive framework was implemented into the FEM software ABAQUS, and a thickwalled 3D artery was analyzed. By implementing the model in a FEM software, a platform for solving more complex boundary value problems has been created, and more challenging boundary conditions can be studied. === Många hjärt- och kärlsjukdomar (t.ex. aortaaneurysm, aortadissektion och ateroskleros) sammanfaller med förändrade biomekaniska egenskaper i kärlväggen. Detta examensarbet undersöker vaskulär adaptation, samt biomekaniska egenskaper som detta medför. Vaskulär adaptation avser anpassningar i blodkärlsväggen som orsakats av en förändring i  kärlväggens omgivning. Detta kan studeras genom in vitro-experiment på isolerade blodkärl. Tidigare studier har visat att adaptation i blodkärl uppkommer till följd av förändrat blodtryck. Studierna om adaptation behandlar oftast det passiva materialet i kärlväggen. Det är därför mindre känt hur de glatta muskelcellerna adapteras. Tidigare projekt har behandlat vaskulär adaptation och hur det påverkas av mekanisk stretch (Bakker m.fl. 2004 och Tuna m.fl. 2013). Murtada m.fl. (pågående) har visat att adaptation på låg stretch medför en minskning av den aktiva tonen, samt att den ökar vid hög stretch. För att testa tidigare resultat utfördes in vitroexperiment på aorta från möss. Data från experimenten användes för att anpassa en matematisk modell som modellerar beteendet av kärlväggen. Avslutningsvis implementerades det konstitutiva ramverket i FEM-mjukvaran ABAQUS.
author Lewin, Susanne
spellingShingle Lewin, Susanne
Biomechanics of Arterial Smooth Muscle. : - Analyzing vascular adaptation of large elastic arteries using in vitro experiments and 3D finite element modeling.
author_facet Lewin, Susanne
author_sort Lewin, Susanne
title Biomechanics of Arterial Smooth Muscle. : - Analyzing vascular adaptation of large elastic arteries using in vitro experiments and 3D finite element modeling.
title_short Biomechanics of Arterial Smooth Muscle. : - Analyzing vascular adaptation of large elastic arteries using in vitro experiments and 3D finite element modeling.
title_full Biomechanics of Arterial Smooth Muscle. : - Analyzing vascular adaptation of large elastic arteries using in vitro experiments and 3D finite element modeling.
title_fullStr Biomechanics of Arterial Smooth Muscle. : - Analyzing vascular adaptation of large elastic arteries using in vitro experiments and 3D finite element modeling.
title_full_unstemmed Biomechanics of Arterial Smooth Muscle. : - Analyzing vascular adaptation of large elastic arteries using in vitro experiments and 3D finite element modeling.
title_sort biomechanics of arterial smooth muscle. : - analyzing vascular adaptation of large elastic arteries using in vitro experiments and 3d finite element modeling.
publisher KTH, Hållfasthetslära (Inst.)
publishDate 2014
url http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-176406
work_keys_str_mv AT lewinsusanne biomechanicsofarterialsmoothmuscleanalyzingvascularadaptationoflargeelasticarteriesusinginvitroexperimentsand3dfiniteelementmodeling
_version_ 1718125539158392832