Laser processing of Silica based glass

The main topic of this thesis work is photosensitivity and photo-structuring of optical fibers and bulk glass. Although research in the field of photosensitivity in glass and optical fibers has been ongoing for more than three decades, the underlying mechanisms are still not well understood. The obj...

Full description

Bibliographic Details
Main Author: Holmberg, Patrik
Format: Doctoral Thesis
Language:English
Published: KTH, Laserfysik 2015
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173929
http://nbn-resolving.de/urn:isbn:978-91-7595-709-8
id ndltd-UPSALLA1-oai-DiVA.org-kth-173929
record_format oai_dc
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Fiber Bragg Gratings
photosensitivity
Glass
laser machining
optical fibers
fiber sensor
spellingShingle Fiber Bragg Gratings
photosensitivity
Glass
laser machining
optical fibers
fiber sensor
Holmberg, Patrik
Laser processing of Silica based glass
description The main topic of this thesis work is photosensitivity and photo-structuring of optical fibers and bulk glass. Although research in the field of photosensitivity in glass and optical fibers has been ongoing for more than three decades, the underlying mechanisms are still not well understood. The objective was to gain a better understanding of the photo-response by studying photosensitivity from a thermodynamic perspective, as opposed to established research focusing on point defects and structural changes, and strain and stress in optical fibers. Optical fibers was mainly used for experimental studies for two reasons; first, photosensitivity in fibers is more pronounced and more elusive compared to its bulk counterpart, and secondly, fibers provide a simplified structure to study as they experimentally can be seen as one-dimensional.Initially, ablation experiments on bulk glass were performed using picosecond infrared pulses. With a design cross section of 40x40 μm, straight channels were fabricated on the top (facing incident light) and bottom side of the sample and the resulting geometries were analyzed. The results show a higher sensitivity to experimental parameters for bottom side ablation which was ascribed to material incubation effects. Moreover, on the top side, the resulting geometry has a V-shape, independent of experimental parameters, related to the numerical aperture of the focusing lens, which was ascribed to shadowing effects.After this work, the focus shifted towards optical fibers, UV-induced fiber Bragg gratings (FBGs) and thermal processing with conventional oven and with a CO2 laser as a source of radiant heat.First, a system for CO2 laser heating of optical fibers was constructed. For measuring the temperature of the processed fibers, a special type of FBG with high temperature stability, referred to as "Chemical Composition Grating" (CCG) was used. A thorough characterization and temperature calibration was performed and the results show the temperature dynamics with a temporal resolution of less than one millisecond. The temperature profile of the fiber and the laser beam intensity profile could be measured with a spatial resolution limited by the grating length and diameter of the fiber. Temperatures as high as ~ 1750 °C could be measured with corresponding heating and cooling rates of 10.500 K/s and 6.500 K/s.Subsequently, a thorough investigation of annealing and thermal regeneration of FBGs in standard telecommunication fibers was performed. The results show that thermal grating regeneration involves several mechanisms. For strong regeneration, an optimum annealing temperature near 900 C was found. Two different activation energies could be extracted from an Arrhenius of index modulation and Braggv iwavelength, having a crossing point also around 900 °C, indication a balance of two opposing mechanisms.Finally, the thermal dynamics and spectral evolution during formation of long period fiber gratings (LPGs) were investigated. The gratings were fabricated using the CO2 laser system by periodically grooving the fibers by thermal ablation. Transmission losses were reduced by carefully selecting the proper processing conditions. These parameters were identified by mapping groove depth and transmission loss to laser intensity and exposure time. === Huvudtemana i denna avhandling är fotokänslighet och fotostrukturering av optiska fibrer och bulk glas. Trots att forskning inom fotokänslighet i glas och optiska fibrer har pågått under mer än tre decennier är de bakomliggande mekanismerna ännu inte klarlagda. Syftet var att få en bättre förståelse för fotoresponsen genom att studera fotokäsligheten ur ett termodynamiskt perspektiv, i motsats till etablerad forskning med fokus på punktdefekter och strukturförändringar, samt mekaniska spännings effekter i optiska fibrer. Optiska fibrer användes för flertalet av de experimentella studierna av två skäl; för det första är fotokänsligheten i fibrer större och dessutom vet man mindre om bakomliggande mekanismer jämfört med motsvarande bulk glas, och för det andra kan fibrer vara enklare att studera eftersom de experimentellt kan ses som en endimensionell struktur.Inledningsvis utfördes ablaherings experiment på bulk glas med en infraröd laser med pikosekund pulser. Raka kanaler med ett designtvärsnitt på 40x40 μm tillverkades på ovansidan (mot infallande ljus) och bottensidan av provet och de resulterande geometrierna analyserades. Resultaten visar en högre känslighet för variationer i experimentella parametrar vid ablahering på undersidan vilket kan förklaras av inkubations effekter i materialet. Dessutom är den resulterande geometrin på ovansidan V-formad, oavsett experimentella parametrar, vilket kunde relateras till den numeriska aperturen hos den fokuserande linsen, vilket förklaras av skuggningseffekter.Efter detta arbete flyttades fokus mot optiska fibrer, UV inducerade fiber Bragg gitter (FBG), och termisk bearbetning med konventionell ugn samt även med en CO2-laser som källa för strålningsvärme.Först konstruerades ett system för CO2-laservärmning av fibrer. För mätning av temperaturen hos bearbetade fibrer användes en speciell sorts FBG med hög temperaturstabilitet, kallade ”Chemical Composition Gratings” (CCG). En grundlig karaktärisering och temperaturkalibrering utfördes och temperaturdynamiken mättes med en tidsupplösning på under en millisekund. Temperaturprofilen i fibern, och laserns strålprofil, kunde mätas med en spatiell upplösning begränsad av gitterlängden och fiberns diameter. Temperaturer upp till ~1750 °C, vilket är högre än mjukpunktstemperaturen, kunde mätas med korresponderande uppvärmnings- och avsvalningshastighet på 10.500 K/s och 6.500 K/s.Därefter gjordes en omfattande undersökning av värmebearbetning och termisk regenerering av FBG:er i telekomfiber. Resultaten visar att termisk gitter-regenerering aktiveras av flera olika mekanismer. Värmebearbetning vid en temperatur omkring 900 °C resulterade i starka gitter efter en regenerering vid en temperatur på 1100 °C. Två olika aktiveringsenergier kunde extraheras från en Arrhenius plot avseende brytningsindexmodulation och Braggvåglängd, med en skärningspunkt tillika runt 900 °C, vilket indikerar en avvägning mellan två motverkande mekanismer vid denna temperatur.Slutligen undersöktes temperaturdynamiken och de spektrala egenskaperna under tillverkning av långperiodiga fibergitter (LPG). Gittren tillverkades med CO2-vi iilasersystemet genom att skapa en periodisk urgröpning medelst termisk ablahering. Transmissionsförluster kunde reduceras med noggrant valda processparametrar. Dessa parametrar identifierades genom mätningar av ablaherat djup och transmissionsförlust som funktion av laserintensitet och exponeringstid. === <p>QC 20150924</p>
author Holmberg, Patrik
author_facet Holmberg, Patrik
author_sort Holmberg, Patrik
title Laser processing of Silica based glass
title_short Laser processing of Silica based glass
title_full Laser processing of Silica based glass
title_fullStr Laser processing of Silica based glass
title_full_unstemmed Laser processing of Silica based glass
title_sort laser processing of silica based glass
publisher KTH, Laserfysik
publishDate 2015
url http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173929
http://nbn-resolving.de/urn:isbn:978-91-7595-709-8
work_keys_str_mv AT holmbergpatrik laserprocessingofsilicabasedglass
_version_ 1716824740033724416
spelling ndltd-UPSALLA1-oai-DiVA.org-kth-1739292015-09-25T04:28:25ZLaser processing of Silica based glassengHolmberg, PatrikKTH, LaserfysikStockholm2015Fiber Bragg GratingsphotosensitivityGlasslaser machiningoptical fibersfiber sensorThe main topic of this thesis work is photosensitivity and photo-structuring of optical fibers and bulk glass. Although research in the field of photosensitivity in glass and optical fibers has been ongoing for more than three decades, the underlying mechanisms are still not well understood. The objective was to gain a better understanding of the photo-response by studying photosensitivity from a thermodynamic perspective, as opposed to established research focusing on point defects and structural changes, and strain and stress in optical fibers. Optical fibers was mainly used for experimental studies for two reasons; first, photosensitivity in fibers is more pronounced and more elusive compared to its bulk counterpart, and secondly, fibers provide a simplified structure to study as they experimentally can be seen as one-dimensional.Initially, ablation experiments on bulk glass were performed using picosecond infrared pulses. With a design cross section of 40x40 μm, straight channels were fabricated on the top (facing incident light) and bottom side of the sample and the resulting geometries were analyzed. The results show a higher sensitivity to experimental parameters for bottom side ablation which was ascribed to material incubation effects. Moreover, on the top side, the resulting geometry has a V-shape, independent of experimental parameters, related to the numerical aperture of the focusing lens, which was ascribed to shadowing effects.After this work, the focus shifted towards optical fibers, UV-induced fiber Bragg gratings (FBGs) and thermal processing with conventional oven and with a CO2 laser as a source of radiant heat.First, a system for CO2 laser heating of optical fibers was constructed. For measuring the temperature of the processed fibers, a special type of FBG with high temperature stability, referred to as "Chemical Composition Grating" (CCG) was used. A thorough characterization and temperature calibration was performed and the results show the temperature dynamics with a temporal resolution of less than one millisecond. The temperature profile of the fiber and the laser beam intensity profile could be measured with a spatial resolution limited by the grating length and diameter of the fiber. Temperatures as high as ~ 1750 °C could be measured with corresponding heating and cooling rates of 10.500 K/s and 6.500 K/s.Subsequently, a thorough investigation of annealing and thermal regeneration of FBGs in standard telecommunication fibers was performed. The results show that thermal grating regeneration involves several mechanisms. For strong regeneration, an optimum annealing temperature near 900 C was found. Two different activation energies could be extracted from an Arrhenius of index modulation and Braggv iwavelength, having a crossing point also around 900 °C, indication a balance of two opposing mechanisms.Finally, the thermal dynamics and spectral evolution during formation of long period fiber gratings (LPGs) were investigated. The gratings were fabricated using the CO2 laser system by periodically grooving the fibers by thermal ablation. Transmission losses were reduced by carefully selecting the proper processing conditions. These parameters were identified by mapping groove depth and transmission loss to laser intensity and exposure time. Huvudtemana i denna avhandling är fotokänslighet och fotostrukturering av optiska fibrer och bulk glas. Trots att forskning inom fotokänslighet i glas och optiska fibrer har pågått under mer än tre decennier är de bakomliggande mekanismerna ännu inte klarlagda. Syftet var att få en bättre förståelse för fotoresponsen genom att studera fotokäsligheten ur ett termodynamiskt perspektiv, i motsats till etablerad forskning med fokus på punktdefekter och strukturförändringar, samt mekaniska spännings effekter i optiska fibrer. Optiska fibrer användes för flertalet av de experimentella studierna av två skäl; för det första är fotokänsligheten i fibrer större och dessutom vet man mindre om bakomliggande mekanismer jämfört med motsvarande bulk glas, och för det andra kan fibrer vara enklare att studera eftersom de experimentellt kan ses som en endimensionell struktur.Inledningsvis utfördes ablaherings experiment på bulk glas med en infraröd laser med pikosekund pulser. Raka kanaler med ett designtvärsnitt på 40x40 μm tillverkades på ovansidan (mot infallande ljus) och bottensidan av provet och de resulterande geometrierna analyserades. Resultaten visar en högre känslighet för variationer i experimentella parametrar vid ablahering på undersidan vilket kan förklaras av inkubations effekter i materialet. Dessutom är den resulterande geometrin på ovansidan V-formad, oavsett experimentella parametrar, vilket kunde relateras till den numeriska aperturen hos den fokuserande linsen, vilket förklaras av skuggningseffekter.Efter detta arbete flyttades fokus mot optiska fibrer, UV inducerade fiber Bragg gitter (FBG), och termisk bearbetning med konventionell ugn samt även med en CO2-laser som källa för strålningsvärme.Först konstruerades ett system för CO2-laservärmning av fibrer. För mätning av temperaturen hos bearbetade fibrer användes en speciell sorts FBG med hög temperaturstabilitet, kallade ”Chemical Composition Gratings” (CCG). En grundlig karaktärisering och temperaturkalibrering utfördes och temperaturdynamiken mättes med en tidsupplösning på under en millisekund. Temperaturprofilen i fibern, och laserns strålprofil, kunde mätas med en spatiell upplösning begränsad av gitterlängden och fiberns diameter. Temperaturer upp till ~1750 °C, vilket är högre än mjukpunktstemperaturen, kunde mätas med korresponderande uppvärmnings- och avsvalningshastighet på 10.500 K/s och 6.500 K/s.Därefter gjordes en omfattande undersökning av värmebearbetning och termisk regenerering av FBG:er i telekomfiber. Resultaten visar att termisk gitter-regenerering aktiveras av flera olika mekanismer. Värmebearbetning vid en temperatur omkring 900 °C resulterade i starka gitter efter en regenerering vid en temperatur på 1100 °C. Två olika aktiveringsenergier kunde extraheras från en Arrhenius plot avseende brytningsindexmodulation och Braggvåglängd, med en skärningspunkt tillika runt 900 °C, vilket indikerar en avvägning mellan två motverkande mekanismer vid denna temperatur.Slutligen undersöktes temperaturdynamiken och de spektrala egenskaperna under tillverkning av långperiodiga fibergitter (LPG). Gittren tillverkades med CO2-vi iilasersystemet genom att skapa en periodisk urgröpning medelst termisk ablahering. Transmissionsförluster kunde reduceras med noggrant valda processparametrar. Dessa parametrar identifierades genom mätningar av ablaherat djup och transmissionsförlust som funktion av laserintensitet och exponeringstid. <p>QC 20150924</p>Doctoral thesis, comprehensive summaryinfo:eu-repo/semantics/doctoralThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173929urn:isbn:978-91-7595-709-8TRITA-FYS, 0280-316X ; 2015:72application/pdfinfo:eu-repo/semantics/openAccess