Summary: | Aging in humans is often associated with reduced muscle strength and difficulty in elevating the arm and sustaining it at a certain position. The aim of this master thesis is to propose a number of technical solutions integrated into a complete electronic system which can be used to support the user's muscle capacity and partially resist gravitational load. An electronic system consisting of sensors, a control unit and an actuator has been developed. The system is able to detect the user's motion intention based on an angle detection algorithm and perform kinematic control over the user's arm by adjusting the level of support at different degrees of elevation. A force control algorithm has been developed for controlling the actuating mechanism, providing the user with a natural and intuitive support during arm elevation. The implemented system is a first step towards the development of a medical assistive device for the elderly or patients with reduced muscle strength allowing them to independently perform a number of personal activities of daily life where active participation of the upper limb is required.
|