Finding seminal scientific publications with graph mining

We investigate the applicability of network analysis to the problem of finding seminal publications in scientific publishing. In particular, we focus on the network measures betweenness centrality, the so-called backbone graph, and the burstiness of citations. The metrics are evaluated using precisi...

Full description

Bibliographic Details
Main Author: Runelöv, Martin
Format: Others
Language:English
Published: KTH, Skolan för datavetenskap och kommunikation (CSC) 2015
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172382
Description
Summary:We investigate the applicability of network analysis to the problem of finding seminal publications in scientific publishing. In particular, we focus on the network measures betweenness centrality, the so-called backbone graph, and the burstiness of citations. The metrics are evaluated using precision-related scores with respect to gold standards based on fellow programmes and manual annotation. Citation counts, PageRank, and random selection are used as baselines. We find that the backbone graph provides us with a way to possibly discover seminal publications with low citation count, and combining betweenness and burstiness gives results on par with citation count. === I detta examensarbete undersöks det huruvida analys av citeringsgrafer kan användas för att finna betydelsefulla vetenskapliga publikationer. Framför allt studeras ”betweenness”-centralitet, den så kallade ”backbone”-grafen samt ”burstiness” av citeringar. Dessa mått utvärderas med hjälp av precisionsmått med avseende på guldstandarder baserade på ’fellow’-program samt via manuell annotering. Antal citeringar, PageRank, och slumpmässigt urval används som jämförelse. Resultaten visar att ”backbone”-grafen kan bidra till att eventuellt upptäcka betydelsefulla publikationer med ett lågt antal citeringar samt att en kombination av ”betweenness” och ”burstiness” ger resultat i nivå med de man får av att räkna antal citeringar.