Exploring climate impacts of timber buildings : The effects from including non-traditional aspects in life cycle impact assessment

There is an urgency within the building sector to reduce its greenhouse gas emissions and mitigate climate change. An increased proportion of biobased building materials in construction is a potential measure to reduce these emissions. Life cycle assessment (LCA) has often been applied to compare th...

Full description

Bibliographic Details
Main Author: Peñaloza, Diego
Format: Others
Language:English
Published: KTH, Byggnadsmaterial 2015
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-161193
id ndltd-UPSALLA1-oai-DiVA.org-kth-161193
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-kth-1611932015-03-11T04:51:42ZExploring climate impacts of timber buildings : The effects from including non-traditional aspects in life cycle impact assessmentengPeñaloza, DiegoKTH, ByggnadsmaterialStockholm2015life cycle assessment (LCA)timber buildingsbiobased building materialslow-energy buildingsforest productsclimate impact assessmentbiogenic emissionscarbon storagetiming of emissionsThere is an urgency within the building sector to reduce its greenhouse gas emissions and mitigate climate change. An increased proportion of biobased building materials in construction is a potential measure to reduce these emissions. Life cycle assessment (LCA) has often been applied to compare the climate impact from biobased materials with that from e.g. mineral based materials, mostly favouring biobased materials. Contradicting results have however been reported due to differences in methodology, as there is not yet consensus regarding certain aspects. The aim of this thesis is to study the implications from non-traditional practices in climate impact assessment of timber buildings, and to discuss the shortcomings of current practices when assessing such products and comparing them with non-renewable alternatives. The traditional practices for climate impact assessment of biobased materials have been identified, and then applied to a case study of a building with different timber frame designs and an alternative building with a concrete frame. Then, non-traditional practices were explored by calculating climate impact results using alternative methods to handle certain methodological aspects, which have been found relevant for forest products in previous research such as the timing of emissions, biogenic emissions, carbon storage in the products, end-of-life substitution credits, soil carbon disturbances and change in albedo. These alternative practices and their implications were also studied for low-carbon buildings. The use of non-traditional practices can affect the climate impact assessment results of timber buildings, and to some extent the comparison with buildings with lower content of biobased building materials. This effect is especially evident for energy-efficient buildings. Current normal practices tend to account separately for forest-related carbon flows and aspects such as biogenic carbon emissions and sequestration or effects from carbon storage in the products, missing to capture the forest carbon cycle as a whole. Climate neutrality of wood-based construction materials seems like a valid assumption for studies which require methodological simplification, while other aspects such as end-of-life substitution credits, soil carbon disturbances or changes in albedo should be studied carefully due to their potentially high implications and the uncertainties around the methods used to account for them. If forest phenomena are to be included in LCA studies, a robust and complete model of the forest carbon cycle should be used. Another shortcoming is the lack of clear communication of the way some important aspects were handled. <p>QC 20150310</p>Licentiate thesis, comprehensive summaryinfo:eu-repo/semantics/masterThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-161193TRITA-BYMA, 0349-5752 ; 2015:1application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic life cycle assessment (LCA)
timber buildings
biobased building materials
low-energy buildings
forest products
climate impact assessment
biogenic emissions
carbon storage
timing of emissions
spellingShingle life cycle assessment (LCA)
timber buildings
biobased building materials
low-energy buildings
forest products
climate impact assessment
biogenic emissions
carbon storage
timing of emissions
Peñaloza, Diego
Exploring climate impacts of timber buildings : The effects from including non-traditional aspects in life cycle impact assessment
description There is an urgency within the building sector to reduce its greenhouse gas emissions and mitigate climate change. An increased proportion of biobased building materials in construction is a potential measure to reduce these emissions. Life cycle assessment (LCA) has often been applied to compare the climate impact from biobased materials with that from e.g. mineral based materials, mostly favouring biobased materials. Contradicting results have however been reported due to differences in methodology, as there is not yet consensus regarding certain aspects. The aim of this thesis is to study the implications from non-traditional practices in climate impact assessment of timber buildings, and to discuss the shortcomings of current practices when assessing such products and comparing them with non-renewable alternatives. The traditional practices for climate impact assessment of biobased materials have been identified, and then applied to a case study of a building with different timber frame designs and an alternative building with a concrete frame. Then, non-traditional practices were explored by calculating climate impact results using alternative methods to handle certain methodological aspects, which have been found relevant for forest products in previous research such as the timing of emissions, biogenic emissions, carbon storage in the products, end-of-life substitution credits, soil carbon disturbances and change in albedo. These alternative practices and their implications were also studied for low-carbon buildings. The use of non-traditional practices can affect the climate impact assessment results of timber buildings, and to some extent the comparison with buildings with lower content of biobased building materials. This effect is especially evident for energy-efficient buildings. Current normal practices tend to account separately for forest-related carbon flows and aspects such as biogenic carbon emissions and sequestration or effects from carbon storage in the products, missing to capture the forest carbon cycle as a whole. Climate neutrality of wood-based construction materials seems like a valid assumption for studies which require methodological simplification, while other aspects such as end-of-life substitution credits, soil carbon disturbances or changes in albedo should be studied carefully due to their potentially high implications and the uncertainties around the methods used to account for them. If forest phenomena are to be included in LCA studies, a robust and complete model of the forest carbon cycle should be used. Another shortcoming is the lack of clear communication of the way some important aspects were handled. === <p>QC 20150310</p>
author Peñaloza, Diego
author_facet Peñaloza, Diego
author_sort Peñaloza, Diego
title Exploring climate impacts of timber buildings : The effects from including non-traditional aspects in life cycle impact assessment
title_short Exploring climate impacts of timber buildings : The effects from including non-traditional aspects in life cycle impact assessment
title_full Exploring climate impacts of timber buildings : The effects from including non-traditional aspects in life cycle impact assessment
title_fullStr Exploring climate impacts of timber buildings : The effects from including non-traditional aspects in life cycle impact assessment
title_full_unstemmed Exploring climate impacts of timber buildings : The effects from including non-traditional aspects in life cycle impact assessment
title_sort exploring climate impacts of timber buildings : the effects from including non-traditional aspects in life cycle impact assessment
publisher KTH, Byggnadsmaterial
publishDate 2015
url http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-161193
work_keys_str_mv AT penalozadiego exploringclimateimpactsoftimberbuildingstheeffectsfromincludingnontraditionalaspectsinlifecycleimpactassessment
_version_ 1716731979764858880