Acceleration of Compressible Flow Simulations with Edge Using Implicit Time Stepping
Computational fluid dynamics (CFD) is a significant tool routinely used indesign and optimization in aerospace industry. Often cases with unsteadyflows must be computed, and the long compute times of standard methods hasmotivated the present work on new implicit methods to replace the standardexplic...
Main Author: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
KTH, Aerodynamik
2014
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-156414 http://nbn-resolving.de/urn:isbn:978-91-7595-370-0 |
id |
ndltd-UPSALLA1-oai-DiVA.org-kth-156414 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-kth-1564142014-12-02T05:07:25ZAcceleration of Compressible Flow Simulations with Edge Using Implicit Time SteppingengOtero, EvelynKTH, AerodynamikStockholm2014Compressible CFDConvergence AccelerationImplicit Time-SteppingLU-SGSUpwind Type DissipationLine-implicitOrderingParallelizationParametersMultigridComputational fluid dynamics (CFD) is a significant tool routinely used indesign and optimization in aerospace industry. Often cases with unsteadyflows must be computed, and the long compute times of standard methods hasmotivated the present work on new implicit methods to replace the standardexplicit schemes. The implementation and numerical experiments were donewith the Swedish national flow solver Edge, developed by FOI,universities, and collaboration partners.The work is concentrated on a Lower-Upper Symmetric Gauss-Seidel (LU-SGS)type of time stepping. For the very anisotropic grids needed forReynolds-Averaged Navier-Stokes (RANS) computations of turbulent boundary layers,LU-SGS is combined with a line-implicit technique. The inviscid flux Jacobians which contribute to the diagonalblocks of the system matrix are based on a flux splitting method with upwind type dissipation giving control over diagonal dominance and artificial dissipation.The method is controlled by several parameters, and comprehensivenumerical experiments were carried out to identify their influence andinteraction so that close to optimal values can be suggested. As an example,the optimal number of iterations carried out in a time-step increases with increased resolution of the computational grid.The numbering of the unknowns is important, and the numberings produced by mesh generators of Delaunay- and advancing front-type wereamong the best.The solver has been parallelized with the Message Passing Interface (MPI) for runs on multi-processor hardware,and its performance scales with the number of processors at least asefficiently as the explicit methods. The new method saves typicallybetween 50 and 80 percent of the runtime, depending on the case, andthe largest computations have reached 110M grid nodes. Theclassical multigrid acceleration for 3D RANS simulations was foundineffective in the cases tested in combination with the LU-SGS solverusing optimal parameters. Finally, preliminary time-accurate simulations for unsteady flows have shown promising results. <p>QC 20141201</p>Doctoral thesis, comprehensive summaryinfo:eu-repo/semantics/doctoralThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-156414urn:isbn:978-91-7595-370-0TRITA-AVE, 1651-7660 ; 2014:72application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Doctoral Thesis |
sources |
NDLTD |
topic |
Compressible CFD Convergence Acceleration Implicit Time-Stepping LU-SGS Upwind Type Dissipation Line-implicit Ordering Parallelization Parameters Multigrid |
spellingShingle |
Compressible CFD Convergence Acceleration Implicit Time-Stepping LU-SGS Upwind Type Dissipation Line-implicit Ordering Parallelization Parameters Multigrid Otero, Evelyn Acceleration of Compressible Flow Simulations with Edge Using Implicit Time Stepping |
description |
Computational fluid dynamics (CFD) is a significant tool routinely used indesign and optimization in aerospace industry. Often cases with unsteadyflows must be computed, and the long compute times of standard methods hasmotivated the present work on new implicit methods to replace the standardexplicit schemes. The implementation and numerical experiments were donewith the Swedish national flow solver Edge, developed by FOI,universities, and collaboration partners.The work is concentrated on a Lower-Upper Symmetric Gauss-Seidel (LU-SGS)type of time stepping. For the very anisotropic grids needed forReynolds-Averaged Navier-Stokes (RANS) computations of turbulent boundary layers,LU-SGS is combined with a line-implicit technique. The inviscid flux Jacobians which contribute to the diagonalblocks of the system matrix are based on a flux splitting method with upwind type dissipation giving control over diagonal dominance and artificial dissipation.The method is controlled by several parameters, and comprehensivenumerical experiments were carried out to identify their influence andinteraction so that close to optimal values can be suggested. As an example,the optimal number of iterations carried out in a time-step increases with increased resolution of the computational grid.The numbering of the unknowns is important, and the numberings produced by mesh generators of Delaunay- and advancing front-type wereamong the best.The solver has been parallelized with the Message Passing Interface (MPI) for runs on multi-processor hardware,and its performance scales with the number of processors at least asefficiently as the explicit methods. The new method saves typicallybetween 50 and 80 percent of the runtime, depending on the case, andthe largest computations have reached 110M grid nodes. Theclassical multigrid acceleration for 3D RANS simulations was foundineffective in the cases tested in combination with the LU-SGS solverusing optimal parameters. Finally, preliminary time-accurate simulations for unsteady flows have shown promising results. === <p>QC 20141201</p> |
author |
Otero, Evelyn |
author_facet |
Otero, Evelyn |
author_sort |
Otero, Evelyn |
title |
Acceleration of Compressible Flow Simulations with Edge Using Implicit Time Stepping |
title_short |
Acceleration of Compressible Flow Simulations with Edge Using Implicit Time Stepping |
title_full |
Acceleration of Compressible Flow Simulations with Edge Using Implicit Time Stepping |
title_fullStr |
Acceleration of Compressible Flow Simulations with Edge Using Implicit Time Stepping |
title_full_unstemmed |
Acceleration of Compressible Flow Simulations with Edge Using Implicit Time Stepping |
title_sort |
acceleration of compressible flow simulations with edge using implicit time stepping |
publisher |
KTH, Aerodynamik |
publishDate |
2014 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-156414 http://nbn-resolving.de/urn:isbn:978-91-7595-370-0 |
work_keys_str_mv |
AT oteroevelyn accelerationofcompressibleflowsimulationswithedgeusingimplicittimestepping |
_version_ |
1716725924502700032 |