Modeling and exergoeconomic analysis of biomass gasification in a downdraft gasifier

In this work it is presented an equilibrium model, capable to predict the composition of the generated gas, its Lower Heating Value (LHV), the gasification efficiency, the ratio air/biomass and the  ratio gas/biomass in a downdraft gasifier. The model describes the influence of  the moisture content...

Full description

Bibliographic Details
Main Author: Rabell Ferran, Santiago
Format: Others
Language:English
Published: KTH, Skolan för kemivetenskap (CHE) 2013
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-146595
id ndltd-UPSALLA1-oai-DiVA.org-kth-146595
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-kth-1465952014-06-13T05:20:51ZModeling and exergoeconomic analysis of biomass gasification in a downdraft gasifierengRabell Ferran, SantiagoKTH, Skolan för kemivetenskap (CHE)2013BiomassCogenerationDowndraft gasificationExergoeconomic analysisModellingIn this work it is presented an equilibrium model, capable to predict the composition of the generated gas, its Lower Heating Value (LHV), the gasification efficiency, the ratio air/biomass and the  ratio gas/biomass in a downdraft gasifier. The model describes the influence of  the moisture content of the biomass and the gasification temperatures on the composition and properties of the produced gases, like the low heating value (LHV). It is assumed that all the chemical reactions taking place  in the gasification area are in thermodynamic equilibrium. The model doesn't considered tar formation. It is not considered formation of other hydrocarbons (CxHy) than methane. The types of biomass used for modelling are: sugarcane bagasse, paddy husk, pine sawdust, mixed paper waste and municipal solid waste. The effect of gasification temperature and moisture content of biomass over the gas composition has been also investigated. Also an exergo-economic analysis of cogeneration system forming by a downdraft gasifier associated to an internal combustion engine was carried out, using sugar cane bagasse, rice husk, and pine sawdust, as fuel in gasification processes. At 700°C the highest amount of CO and CH4 are produce. The amount of CH4 and CO decrease with the temperature when the gasification temperature is increased from 700°C to 1000°C. The amount produced H2 does change so much between the gasification at 700°C and 1000°C. But the amount produced hydrogen is somewhat higher at 800°C. The lower heating value (LHV) of the synthesis gas from gasification of sugarcane bagasse the LHV of the produced gas is 4,09MJ/Nm3; for gasification of pine the LHV of the produced gas is 5,32MJ/Nm3; for gasification of rice husk the LHV of the produced gas is 3,14MJ/Nm3, for gasification of mixed paper waste the LHV of the produced gas is 4,51%, and for gasification of municipal solid  waste the LHV of the produced gas is 3,95MJ/Nm3. The cold and hot efficiency of gasification process at 800°C for bagasse with 20% moisture content are  55,32% and 84,90% respectively. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-146595application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic Biomass
Cogeneration
Downdraft gasification
Exergoeconomic analysis
Modelling
spellingShingle Biomass
Cogeneration
Downdraft gasification
Exergoeconomic analysis
Modelling
Rabell Ferran, Santiago
Modeling and exergoeconomic analysis of biomass gasification in a downdraft gasifier
description In this work it is presented an equilibrium model, capable to predict the composition of the generated gas, its Lower Heating Value (LHV), the gasification efficiency, the ratio air/biomass and the  ratio gas/biomass in a downdraft gasifier. The model describes the influence of  the moisture content of the biomass and the gasification temperatures on the composition and properties of the produced gases, like the low heating value (LHV). It is assumed that all the chemical reactions taking place  in the gasification area are in thermodynamic equilibrium. The model doesn't considered tar formation. It is not considered formation of other hydrocarbons (CxHy) than methane. The types of biomass used for modelling are: sugarcane bagasse, paddy husk, pine sawdust, mixed paper waste and municipal solid waste. The effect of gasification temperature and moisture content of biomass over the gas composition has been also investigated. Also an exergo-economic analysis of cogeneration system forming by a downdraft gasifier associated to an internal combustion engine was carried out, using sugar cane bagasse, rice husk, and pine sawdust, as fuel in gasification processes. At 700°C the highest amount of CO and CH4 are produce. The amount of CH4 and CO decrease with the temperature when the gasification temperature is increased from 700°C to 1000°C. The amount produced H2 does change so much between the gasification at 700°C and 1000°C. But the amount produced hydrogen is somewhat higher at 800°C. The lower heating value (LHV) of the synthesis gas from gasification of sugarcane bagasse the LHV of the produced gas is 4,09MJ/Nm3; for gasification of pine the LHV of the produced gas is 5,32MJ/Nm3; for gasification of rice husk the LHV of the produced gas is 3,14MJ/Nm3, for gasification of mixed paper waste the LHV of the produced gas is 4,51%, and for gasification of municipal solid  waste the LHV of the produced gas is 3,95MJ/Nm3. The cold and hot efficiency of gasification process at 800°C for bagasse with 20% moisture content are  55,32% and 84,90% respectively.
author Rabell Ferran, Santiago
author_facet Rabell Ferran, Santiago
author_sort Rabell Ferran, Santiago
title Modeling and exergoeconomic analysis of biomass gasification in a downdraft gasifier
title_short Modeling and exergoeconomic analysis of biomass gasification in a downdraft gasifier
title_full Modeling and exergoeconomic analysis of biomass gasification in a downdraft gasifier
title_fullStr Modeling and exergoeconomic analysis of biomass gasification in a downdraft gasifier
title_full_unstemmed Modeling and exergoeconomic analysis of biomass gasification in a downdraft gasifier
title_sort modeling and exergoeconomic analysis of biomass gasification in a downdraft gasifier
publisher KTH, Skolan för kemivetenskap (CHE)
publishDate 2013
url http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-146595
work_keys_str_mv AT rabellferransantiago modelingandexergoeconomicanalysisofbiomassgasificationinadowndraftgasifier
_version_ 1716669365197209600