Development of a fuel injection system for an opposed piston two stroke HCCI engine
HCCI combustion engines can provide high fuel efficiencies with low NOx emissions compared to SI and CI engines due to their lean combustion, high compression ratios and low combustion temperatures. The disadvantage of HCCI is that it is inherently difficult to control. The need for an optimized fue...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
KTH, Maskinkonstruktion (Inst.)
2012
|
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-143615 |
id |
ndltd-UPSALLA1-oai-DiVA.org-kth-143615 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
description |
HCCI combustion engines can provide high fuel efficiencies with low NOx emissions compared to SI and CI engines due to their lean combustion, high compression ratios and low combustion temperatures. The disadvantage of HCCI is that it is inherently difficult to control. The need for an optimized fuel injection system is crucial in the design of an HCCI engine to achieve desirable and controllable performance. The aim of this thesis was to develop and optimize the fuel injection system for a 2- stroke, opposed piston gasoline engine thus continuing the development of the engine towards achieving stable HCCI combustion. The engine and the components that make up the fuel supply and injection system characteristics were analyzed using experimental and theoretical methods. The mathematical ideal mass of fuel and point of injection was found (when exhaust ports are closed). Injector delay, mass vs. electrical on-time and voltage sensitivity was found. Deflector designs used to divert the fuel flow laterally along the cylinder were studied and prototypes manufactured and tested. The engine was then run with new settings and deflector and the results analyzed. It was found that an L-cut design gave the best spray properties in this situation. An Lcut design with two internal seals gave the most favorable spray angle and atomization. A mass equation was formed that linked the mass injected to on-time in the ECU with consideration of the varying supply voltage. Using this mass equation and taking into account the delay, an ideal injection point was found. Implementing the new deflector and with improved injection timing, the engine was able to run smoothly with the theoretical mass required for λ=1 at 6000rpm and produce 0.28 kW of power. This was a noticeable improvement over previous engine tests which required more fuel mass for stable combustion. In conclusion, information was gained which allowed improvement of the injection timing and fuel control. The engine was run with much more accurate masses of fuel injected and injection times. The deflector improved atomization and optimized the spray angle. The data gained from the tests and analysis can be implemented into the engines ECU code for automated injection timing and fuel mass. This, coupled with the improved spray profile has aided in the continuing development of the engine towards stable, efficient HCCI combustion. === HCCI förbränningsmotorer kan ge hög verkningsgrad med låga NOx-utsläpp jämfört med SI och CI-motorer på grund av sin magra förbränning, högt kompressionsförhållande och låg förbränningstemperatur. Nackdelen med HCCI är att den är svår att kontrollera. Behovet av ett optimerat bränsleinsprutningssystem är avgörande för utformningen av en HCCI motor för att uppnå önskvärt och kontrollerbart resultat. Syftet med detta examensarbete var att utveckla och optimera bränsleinsprutningssystemet för en 2-takts, motkolvs bensinmotor och därmed fortsätta utvecklingen av motorn för att uppnå en stabil HCCI förbränning. Motorn och de komponenter som utgör bränsletillförseln analyserades med hjälp av experimentella och teoretiska metoder. Den matematiska ideala massan bränsle och den ideala insprutningsvinkeln bestämdes (när både insugs-och avgas portarna var stängda). Insprutningsfördröjning kontra ”electrical on-time” och spänningskänslighet bestämdes. Olika utformningar av deflektorn som används för att avleda bränsleflödet i sidled längs cylindern studerades, prototyper tillverkas och testades. Motorn kördes därefter med nya inställningar och ny deflektor och resultaten analyserades. Det visade sig att ”L-cut ”designen gav de bästa spray egenskaperna i denna situation. En ”L-cut” design med två inre tätningar gav den mest fördelaktiga sprayvinkeln och finfördelningen. En massekvation skapades som länkade den insprutade massan till ”elektrical on-time” i ECUn med hänsyn till den varierande matningsspänningen. Genom att använda massekvationen och samtidigt ta hänsyn till fördröjningen kunde en ideal insprutningsvinkel hittas. Implementering av den nya deflektorn tillsammans med förbättrad insprutningsvinkel gjorde att motorn kunde köras jämnt med den teoretiska massan som krävs för λ = 1 vid 6000rpm, och samtidigt producera effekt om 0,28 kW. Det var en märkbar förbättring jämfört med tidigare motortester som krävde dubbla bränslemängden för stabil förbränning. Sammanfattningsvis erhölls data som gjorde förbättringarna av insprutningsvinkel och bränslekontrollen möjlig. Motorn kördes med mycket mer exakt insprutad bränslemassa och insprutningsvinkel. Deflektorn förbättrade finfördelningen och optimerade sprayvinkeln. De data som insamlas från tester och analyser kan implementeras i motorns ECU kod för automatiserad insprutningstidpunkt och bränsle massa. Detta har tillsammans med den förbättrade sprayprofilen bidragit till den fortsatta utvecklingen av motorn mot en stabil, effektiv HCCI förbränning. |
author |
Boyd, Michael |
spellingShingle |
Boyd, Michael Development of a fuel injection system for an opposed piston two stroke HCCI engine |
author_facet |
Boyd, Michael |
author_sort |
Boyd, Michael |
title |
Development of a fuel injection system for an opposed piston two stroke HCCI engine |
title_short |
Development of a fuel injection system for an opposed piston two stroke HCCI engine |
title_full |
Development of a fuel injection system for an opposed piston two stroke HCCI engine |
title_fullStr |
Development of a fuel injection system for an opposed piston two stroke HCCI engine |
title_full_unstemmed |
Development of a fuel injection system for an opposed piston two stroke HCCI engine |
title_sort |
development of a fuel injection system for an opposed piston two stroke hcci engine |
publisher |
KTH, Maskinkonstruktion (Inst.) |
publishDate |
2012 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-143615 |
work_keys_str_mv |
AT boydmichael developmentofafuelinjectionsystemforanopposedpistontwostrokehcciengine AT boydmichael utvecklingenavettbransleinsprutningssystemforenmotkolvs2taktsmotor |
_version_ |
1718131394786361344 |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-kth-1436152015-11-19T16:55:17ZDevelopment of a fuel injection system for an opposed piston two stroke HCCI engineengUtvecklingen av ett bränsleinsprutningssystem för en motkolvs 2 takts motorBoyd, MichaelKTH, Maskinkonstruktion (Inst.)2012HCCI combustion engines can provide high fuel efficiencies with low NOx emissions compared to SI and CI engines due to their lean combustion, high compression ratios and low combustion temperatures. The disadvantage of HCCI is that it is inherently difficult to control. The need for an optimized fuel injection system is crucial in the design of an HCCI engine to achieve desirable and controllable performance. The aim of this thesis was to develop and optimize the fuel injection system for a 2- stroke, opposed piston gasoline engine thus continuing the development of the engine towards achieving stable HCCI combustion. The engine and the components that make up the fuel supply and injection system characteristics were analyzed using experimental and theoretical methods. The mathematical ideal mass of fuel and point of injection was found (when exhaust ports are closed). Injector delay, mass vs. electrical on-time and voltage sensitivity was found. Deflector designs used to divert the fuel flow laterally along the cylinder were studied and prototypes manufactured and tested. The engine was then run with new settings and deflector and the results analyzed. It was found that an L-cut design gave the best spray properties in this situation. An Lcut design with two internal seals gave the most favorable spray angle and atomization. A mass equation was formed that linked the mass injected to on-time in the ECU with consideration of the varying supply voltage. Using this mass equation and taking into account the delay, an ideal injection point was found. Implementing the new deflector and with improved injection timing, the engine was able to run smoothly with the theoretical mass required for λ=1 at 6000rpm and produce 0.28 kW of power. This was a noticeable improvement over previous engine tests which required more fuel mass for stable combustion. In conclusion, information was gained which allowed improvement of the injection timing and fuel control. The engine was run with much more accurate masses of fuel injected and injection times. The deflector improved atomization and optimized the spray angle. The data gained from the tests and analysis can be implemented into the engines ECU code for automated injection timing and fuel mass. This, coupled with the improved spray profile has aided in the continuing development of the engine towards stable, efficient HCCI combustion. HCCI förbränningsmotorer kan ge hög verkningsgrad med låga NOx-utsläpp jämfört med SI och CI-motorer på grund av sin magra förbränning, högt kompressionsförhållande och låg förbränningstemperatur. Nackdelen med HCCI är att den är svår att kontrollera. Behovet av ett optimerat bränsleinsprutningssystem är avgörande för utformningen av en HCCI motor för att uppnå önskvärt och kontrollerbart resultat. Syftet med detta examensarbete var att utveckla och optimera bränsleinsprutningssystemet för en 2-takts, motkolvs bensinmotor och därmed fortsätta utvecklingen av motorn för att uppnå en stabil HCCI förbränning. Motorn och de komponenter som utgör bränsletillförseln analyserades med hjälp av experimentella och teoretiska metoder. Den matematiska ideala massan bränsle och den ideala insprutningsvinkeln bestämdes (när både insugs-och avgas portarna var stängda). Insprutningsfördröjning kontra ”electrical on-time” och spänningskänslighet bestämdes. Olika utformningar av deflektorn som används för att avleda bränsleflödet i sidled längs cylindern studerades, prototyper tillverkas och testades. Motorn kördes därefter med nya inställningar och ny deflektor och resultaten analyserades. Det visade sig att ”L-cut ”designen gav de bästa spray egenskaperna i denna situation. En ”L-cut” design med två inre tätningar gav den mest fördelaktiga sprayvinkeln och finfördelningen. En massekvation skapades som länkade den insprutade massan till ”elektrical on-time” i ECUn med hänsyn till den varierande matningsspänningen. Genom att använda massekvationen och samtidigt ta hänsyn till fördröjningen kunde en ideal insprutningsvinkel hittas. Implementering av den nya deflektorn tillsammans med förbättrad insprutningsvinkel gjorde att motorn kunde köras jämnt med den teoretiska massan som krävs för λ = 1 vid 6000rpm, och samtidigt producera effekt om 0,28 kW. Det var en märkbar förbättring jämfört med tidigare motortester som krävde dubbla bränslemängden för stabil förbränning. Sammanfattningsvis erhölls data som gjorde förbättringarna av insprutningsvinkel och bränslekontrollen möjlig. Motorn kördes med mycket mer exakt insprutad bränslemassa och insprutningsvinkel. Deflektorn förbättrade finfördelningen och optimerade sprayvinkeln. De data som insamlas från tester och analyser kan implementeras i motorns ECU kod för automatiserad insprutningstidpunkt och bränsle massa. Detta har tillsammans med den förbättrade sprayprofilen bidragit till den fortsatta utvecklingen av motorn mot en stabil, effektiv HCCI förbränning. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-143615MMK 2012:45 MFM 142application/pdfinfo:eu-repo/semantics/openAccess |