Explicit algebraic turbulence modelling in buoyancy-affected shear flows

Turbulent flows affected by buoyancy forces occur in a large amount of applica-tions, from heat transfer in industrial settings to the effects of stratification inEarth’s atmosphere. The two-way coupling between the Reynolds stresses andthe turbulent heat flux present in these flows poses a challeng...

Full description

Bibliographic Details
Main Author: Lazeroms, Werner
Format: Others
Language:English
Published: KTH, Turbulens 2013
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-122468
http://nbn-resolving.de/urn:isbn:978-91-7501-797-6
id ndltd-UPSALLA1-oai-DiVA.org-kth-122468
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-kth-1224682013-05-31T04:02:36ZExplicit algebraic turbulence modelling in buoyancy-affected shear flowsengLazeroms, WernerKTH, TurbulensStockholm2013Turbulent flows affected by buoyancy forces occur in a large amount of applica-tions, from heat transfer in industrial settings to the effects of stratification inEarth’s atmosphere. The two-way coupling between the Reynolds stresses andthe turbulent heat flux present in these flows poses a challenge in the searchfor an appropriate turbulence model. The present thesis addresses this issueusing the class of explicit algebraic models.     Starting from the transport equations for the Reynolds stresses and the tur-bulent heat flux, an explicit algebraic framework is derived for two-dimensionalmean flows under the influence of buoyancy forces. This framework consistsof a system of 18 linear equations, the solution of which leads to explicit ex-pressions for the Reynolds-stress anisotropy and a scaled heat flux. The modelis complemented by a sixth-order polynomial equation for a quantity relatedto the total production-to-dissipation ratio of turbulent kinetic energy. Sinceno exact solution to such an equation can be found, various approximationmethods are presented in order to obtain a fully explicit algebraic model.     Several test cases are considered in this work. Special attention is given tothe case of stably stratified parallel shear flows, which is also used to calibratethe model parameters. As a result of this calibration, we find a critical Richard-son number of 0.25 in the case of stably stratified homogeneous shear flow,which agrees with theoretical results. Furthermore, a comparison with directnumerical simulations (DNS) for stably stratified channel flow shows an excel-lent agreement between the DNS data and the model. Other test cases includeunstably stratified channel flow and vertical channel flow with either mixed con-vection or natural convection, and a reasonably good agreement between themodel and the scarcely available, low-Reynolds-number DNS is found. Com-pared to standard eddy-viscosity/eddy-diffusivity models, an improvement inthe predictions is observed in all cases.     For each of the aforementioned test cases, model coefficients and additionalcorrections are derived separately, and a general formulation has yet to be given.Nevertheless, the results presented in this thesis have the potential of improvingthe prediction of buoyancy-affected turbulence in various application areas. <p>QC 20130530</p>Licentiate thesis, comprehensive summaryinfo:eu-repo/semantics/masterThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-122468urn:isbn:978-91-7501-797-6Trita-MEK, 0348-467X ; 2013:13application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
description Turbulent flows affected by buoyancy forces occur in a large amount of applica-tions, from heat transfer in industrial settings to the effects of stratification inEarth’s atmosphere. The two-way coupling between the Reynolds stresses andthe turbulent heat flux present in these flows poses a challenge in the searchfor an appropriate turbulence model. The present thesis addresses this issueusing the class of explicit algebraic models.     Starting from the transport equations for the Reynolds stresses and the tur-bulent heat flux, an explicit algebraic framework is derived for two-dimensionalmean flows under the influence of buoyancy forces. This framework consistsof a system of 18 linear equations, the solution of which leads to explicit ex-pressions for the Reynolds-stress anisotropy and a scaled heat flux. The modelis complemented by a sixth-order polynomial equation for a quantity relatedto the total production-to-dissipation ratio of turbulent kinetic energy. Sinceno exact solution to such an equation can be found, various approximationmethods are presented in order to obtain a fully explicit algebraic model.     Several test cases are considered in this work. Special attention is given tothe case of stably stratified parallel shear flows, which is also used to calibratethe model parameters. As a result of this calibration, we find a critical Richard-son number of 0.25 in the case of stably stratified homogeneous shear flow,which agrees with theoretical results. Furthermore, a comparison with directnumerical simulations (DNS) for stably stratified channel flow shows an excel-lent agreement between the DNS data and the model. Other test cases includeunstably stratified channel flow and vertical channel flow with either mixed con-vection or natural convection, and a reasonably good agreement between themodel and the scarcely available, low-Reynolds-number DNS is found. Com-pared to standard eddy-viscosity/eddy-diffusivity models, an improvement inthe predictions is observed in all cases.     For each of the aforementioned test cases, model coefficients and additionalcorrections are derived separately, and a general formulation has yet to be given.Nevertheless, the results presented in this thesis have the potential of improvingthe prediction of buoyancy-affected turbulence in various application areas. === <p>QC 20130530</p>
author Lazeroms, Werner
spellingShingle Lazeroms, Werner
Explicit algebraic turbulence modelling in buoyancy-affected shear flows
author_facet Lazeroms, Werner
author_sort Lazeroms, Werner
title Explicit algebraic turbulence modelling in buoyancy-affected shear flows
title_short Explicit algebraic turbulence modelling in buoyancy-affected shear flows
title_full Explicit algebraic turbulence modelling in buoyancy-affected shear flows
title_fullStr Explicit algebraic turbulence modelling in buoyancy-affected shear flows
title_full_unstemmed Explicit algebraic turbulence modelling in buoyancy-affected shear flows
title_sort explicit algebraic turbulence modelling in buoyancy-affected shear flows
publisher KTH, Turbulens
publishDate 2013
url http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-122468
http://nbn-resolving.de/urn:isbn:978-91-7501-797-6
work_keys_str_mv AT lazeromswerner explicitalgebraicturbulencemodellinginbuoyancyaffectedshearflows
_version_ 1716586566228377600