Dynamic Model of a Diesel Engine for Diagnosis and Balancing

To monitor and control the combustion in a diesel engine one can study the speed signal from the flywheel. The idea is that if individual cylinders give different amount of torque this will lead to variations in the flywheel speed. A model which describes the cylinder torque based on flywheel speed can...

Full description

Bibliographic Details
Main Author: Hillerborg, Per
Format: Others
Language:English
Published: KTH, Reglerteknik 2005
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-107535
Description
Summary:To monitor and control the combustion in a diesel engine one can study the speed signal from the flywheel. The idea is that if individual cylinders give different amount of torque this will lead to variations in the flywheel speed. A model which describes the cylinder torque based on flywheel speed can be used to estimate the torque from individual cylinders. With this new knowledge of the individual performance of each cylinder the engine can be balanced. The balancing aim at making the speed of the flywheel more even but also required a model with estimated cylinder torque as input. This model may also be used for testing new control algorithms easily and gaining understanding of the dynamics. In this thesis a time dissolved model is constructed to describe the cylinder pressure-, crankshaft-, flywheel and damper dynamics. The model is based on a physical point of view by approximating the system into nodes containing mass, stiffness and friction. The inputs into the model are injection data from the engine management system (EMS) and a torque from a drive line. Ways to reduce the complexity of the model are investigated in order to invert the model to estimate the injection data based on flywheel speed measurements. Measurementsare done in a test bed to receive data required for model simulation and validation. The result is that the main behavior of the dynamics is caught. The self oscillation behaviors in some operating points are however not caught which indicates that the model can not explain all behaviors. A reduced model works almost as well but of course looses more of the non stiffness behavior. As expected, the model equations can not be solved in real time. The result of the inverted reduced model depends on the flywheel signal. When the signal contains little non stiffness behavior the result is good. An observer model based on the reduced model is suggested and tested in order to estimate the indicated torque from flywheel data. The observer manages to detect errors in the injection.