Optimal Railroad Power Supply System Operation and Design : Detailed system studies, and aggregated investment models

Railway power supply systems (RPSSs) differ mainly from public power systems from that the loads are moving. These moving loads are motoring trains. Trains can also be regenerating when braking and are then power sources. These loads consume comparatively much power, causing substantial voltage drop...

Full description

Bibliographic Details
Main Author: Abrahamsson, Lars
Format: Doctoral Thesis
Language:English
Published: KTH, Elektriska energisystem 2012
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-107037
http://nbn-resolving.de/urn:isbn:978-91-7501-584-2
id ndltd-UPSALLA1-oai-DiVA.org-kth-107037
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-kth-1070372013-02-25T16:06:51ZOptimal Railroad Power Supply System Operation and Design : Detailed system studies, and aggregated investment modelsengAbrahamsson, LarsKTH, Elektriska energisystemStockholm2012Railway power supply systems (RPSSs) differ mainly from public power systems from that the loads are moving. These moving loads are motoring trains. Trains can also be regenerating when braking and are then power sources. These loads consume comparatively much power, causing substantial voltage drops, not rarely so big that the loads are reduced. By practical reasons most RPSSs are single-phase AC or DC. Three-phase public grid power is either converted into single-phase for feeding the railway or the RPSS is compartmentalized into separate sections fed individually from alternating phase-pairs of the public grid. The latter is done in order not to overload any public grid phase unnecessarily much. This thesis summarizes various ways of optimally operating or designing the railway power supply system. The thesis focuses on converter-fed railways for the reasons that they are more controllable, and also has a higher potential for the future. This is also motivated in a literature-reviewing based paper arguing for the converter usage potential. Moreover, converters of some kind have to be used when the RPSS uses DC or different AC frequency than the public grid. The optimal operation part of this thesis is mainly about the optimal power flow controls and unit commitments of railway converter stations in HVDC-fed RPSSs. The models are easily generalized to different feeding, and they cope with regenerative braking. This part considers MINLP (mixed integer nonlinear programming) problems, and the main part of the problem is non-convex nonlinear. The concept is presented in one paper. The subject of how to model the problem formulations have been treated fully in one paper. The thesis also includes a conference article and a manuscript for an idea including the entire electric train driving strategy in an optimization problem considering power system and mechanical couplings over time. The latter concept is a generalized TPSS (Train Power Systems Simulator), aiming for more detailed studies, whereas TPSS is mainly for dimensioning studies. The above optimal power flow models may be implemented in the entire electric train driving strategy model. The optimal design part of this thesis includes two aggregation models for describing reduction in train traffic performance. The first one presented in a journal, and the second one, adapted more useful with different simulation results was presented at a conference. It also includes an early model for optimal railway power converter placements. The conclusions to be made are that the potential for energy savings by better operation of the railway power system is great. Another conclusion is that investment planning models for railway power systems have a high development potential. RPSS planning models are computationally more attractive, when aggregating power system and train traffic details. <p>QC 20121206</p>Doctoral thesis, comprehensive summaryinfo:eu-repo/semantics/doctoralThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-107037urn:isbn:978-91-7501-584-2Trita-EE, 1653-5146 ; 2012:062application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
description Railway power supply systems (RPSSs) differ mainly from public power systems from that the loads are moving. These moving loads are motoring trains. Trains can also be regenerating when braking and are then power sources. These loads consume comparatively much power, causing substantial voltage drops, not rarely so big that the loads are reduced. By practical reasons most RPSSs are single-phase AC or DC. Three-phase public grid power is either converted into single-phase for feeding the railway or the RPSS is compartmentalized into separate sections fed individually from alternating phase-pairs of the public grid. The latter is done in order not to overload any public grid phase unnecessarily much. This thesis summarizes various ways of optimally operating or designing the railway power supply system. The thesis focuses on converter-fed railways for the reasons that they are more controllable, and also has a higher potential for the future. This is also motivated in a literature-reviewing based paper arguing for the converter usage potential. Moreover, converters of some kind have to be used when the RPSS uses DC or different AC frequency than the public grid. The optimal operation part of this thesis is mainly about the optimal power flow controls and unit commitments of railway converter stations in HVDC-fed RPSSs. The models are easily generalized to different feeding, and they cope with regenerative braking. This part considers MINLP (mixed integer nonlinear programming) problems, and the main part of the problem is non-convex nonlinear. The concept is presented in one paper. The subject of how to model the problem formulations have been treated fully in one paper. The thesis also includes a conference article and a manuscript for an idea including the entire electric train driving strategy in an optimization problem considering power system and mechanical couplings over time. The latter concept is a generalized TPSS (Train Power Systems Simulator), aiming for more detailed studies, whereas TPSS is mainly for dimensioning studies. The above optimal power flow models may be implemented in the entire electric train driving strategy model. The optimal design part of this thesis includes two aggregation models for describing reduction in train traffic performance. The first one presented in a journal, and the second one, adapted more useful with different simulation results was presented at a conference. It also includes an early model for optimal railway power converter placements. The conclusions to be made are that the potential for energy savings by better operation of the railway power system is great. Another conclusion is that investment planning models for railway power systems have a high development potential. RPSS planning models are computationally more attractive, when aggregating power system and train traffic details. === <p>QC 20121206</p>
author Abrahamsson, Lars
spellingShingle Abrahamsson, Lars
Optimal Railroad Power Supply System Operation and Design : Detailed system studies, and aggregated investment models
author_facet Abrahamsson, Lars
author_sort Abrahamsson, Lars
title Optimal Railroad Power Supply System Operation and Design : Detailed system studies, and aggregated investment models
title_short Optimal Railroad Power Supply System Operation and Design : Detailed system studies, and aggregated investment models
title_full Optimal Railroad Power Supply System Operation and Design : Detailed system studies, and aggregated investment models
title_fullStr Optimal Railroad Power Supply System Operation and Design : Detailed system studies, and aggregated investment models
title_full_unstemmed Optimal Railroad Power Supply System Operation and Design : Detailed system studies, and aggregated investment models
title_sort optimal railroad power supply system operation and design : detailed system studies, and aggregated investment models
publisher KTH, Elektriska energisystem
publishDate 2012
url http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-107037
http://nbn-resolving.de/urn:isbn:978-91-7501-584-2
work_keys_str_mv AT abrahamssonlars optimalrailroadpowersupplysystemoperationanddesigndetailedsystemstudiesandaggregatedinvestmentmodels
_version_ 1716577990039568384