Summary: | Ett område inom matematik som elever arbetar mycket med i skolan är aritmetik, vilket innebär hur de fyra räknesätten fungerar och kan användas. Dessa räknesätt har olika egenskaper, en av dessa egenskaper, som innehas av addition och mutliplikation, är kommutativitet. Denna egenskap innebär att termers rumsliga placering inte har betydelse för summan. För att eleverna ska utveckla goda kunskaper inom aritmetik och algebra är det därför av vikt att de lär sig om den kommutativa egenskapen. För att kunna skapa goda förutsättningar för elever behöver vi som lärare veta mer om hur elever förstår kommutativitet. Syftet med studien är därför att utforska hur elever i lågstadieåldern resonerar om och använder kommutativitet. I den här studien har elever i förskoleklassen upp till årskurs 3 intervjuats. Intervjuerna var semistrukturerade och individuella. Resultatet visar att när elever resonerar om kommutativitet, har några fokus på summan och några har fokus på termerna. I studien har det även framkommit att flertalet av eleverna övergeneraliserar kommutativitet och tillämpar egenskapen vid subtraktion, vilket överensstämmer väl med vad man sett i tidigare forskning. Elever använder olika beskrivningar när de resonerar om kommutativitet, där framförallt fyra var tydligt framträdande i studien: det spelar ingen roll vilken plats talen står på, de har bytt plats, de har vänt på siffrorna och de har bytt håll. Slutsatsen i studien är att förståelsen för kommutativitet är viktig för att tillförskaffa sig effektiva och användbara strategier i aritmetik. === One area of mathematics that students learn in school is arithmetic, where the four operations are found. These operations have different properties. One of those properties, valid for addition and multiplication, is commutativity. For addition, commutativity means that the terms’ spatial position does not change the sum. For example, 5+2 is equal to 2+5. For students to develop their knowledge of arithmetic, it is important that they also learn about commutativity. Therefore, the aim of the study is to explore how student in primary school discuss and use commutativity in addition. Interviews have been made with student in the preschool class to grade 3. The interviews were semi-structured and individual. It was found that the students reason about commutativity in different ways, some focusing on the sum and some focusing on the terms. The study also shows that most students overgeneralize commutativity and apply it in subtraction which is in argument with findings from previous research. Students used different explanations when they described commutativity: the numbers spatial position doesn’t matter, they have changed place, the numbers are turned around and they have changed direction. The conclusion of the study is that understanding commutativity is important in providing effective and useful strategies in arithmetic.
|