Förbehandling av data vid exempelinlärning för ett ANN som förare i bilspel

Att skapa en bra ANN-förare handlar inte bara om att ha en bra struktur på sitt nätverk. Det är minst lika viktigt att data som används vid träningen av nätverket är av bra kvalité. I detta arbete utvärderas i huvudsak två olika förbehandlingstekniker för att se vilken påverkan de har på slutresulta...

Full description

Bibliographic Details
Main Author: Pettersson, Carl
Format: Others
Language:Swedish
Published: Högskolan i Skövde, Institutionen för informationsteknologi 2017
Subjects:
AI
ANN
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-13749
Description
Summary:Att skapa en bra ANN-förare handlar inte bara om att ha en bra struktur på sitt nätverk. Det är minst lika viktigt att data som används vid träningen av nätverket är av bra kvalité. I detta arbete utvärderas i huvudsak två olika förbehandlingstekniker för att se vilken påverkan de har på slutresultatet. Båda teknikerna, reduceringsutjämning och kategoriutjämning är skapade baserat på resultat från tidigare forskningsarbeten. Förare med olika kombinationer av dessa förbehandlingstekniker och spegling utvärderades på olika banor (spegling innebär att man kopierar alla exempel och vänder håll på dem). Resultatet var tyvärr inte så bra som förväntat då förbehandlingsteknikerna visade sig vara felkonstruerade. Förbehandlingsteknikerna gjorde därför inte sina uppgifter på rätt sätt vilket gav ett lite opålitligt resultat. Det positiva i studien var att förare med en kombination av båda förbehandlingsteknikerna lärde sig bäst. Detta visar på potential hos förbehandlingsteknikerna som därför skulle kunna vidareutvecklas i framtida arbeten.