Maskininlärning och fallklassificering med MEMS-accelerometer : En studie i fallklassificering med artificiella neurala nätverk

Denna rapport har sin utgångspunkt på skapandet av en maskininlärningsalgoritm för att kunna klassificera ett fysiskt fall av en person. En DC Kapacitiv MEMS-accelerometer (BMA250) kombinerat med en Tinyduino Processor (Atmega328P) används för datainsamling. Programmering av processorn och maskininl...

Full description

Bibliographic Details
Main Author: Theo, Sobczak
Format: Others
Language:Swedish
Published: Högskolan i Gävle, Elektronik 2020
Subjects:
Ai
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-34013
Description
Summary:Denna rapport har sin utgångspunkt på skapandet av en maskininlärningsalgoritm för att kunna klassificera ett fysiskt fall av en person. En DC Kapacitiv MEMS-accelerometer (BMA250) kombinerat med en Tinyduino Processor (Atmega328P) används för datainsamling. Programmering av processorn och maskininlärningsalgoritmen skrivs i C++ och ANN (Artificiell Neuralt Nätverk) används för att klassificera det fysiska fallet. ANN kan approximera ett värde som tyder på ett falskt fall efter 10 000 träningssekvenser inom 5% av ett teoretiskt värde som tyder på ett resultat med 100% säkerhet och 0,0005% felmarginal. Ett teoretiskt värde som tyder på ett faktiskt fall kan klassificeras efter 5000 träningssekvenser inom 5% av det eftersökta värdet med 100% säkerhet och 0,0045% felmarginal.