Quality Assessment of Spatial Data: Positional Uncertainties of the National Shoreline Data of Sweden

This study investigates on the planimetric (x, y) positional accuracy of the National Shoreline (NSL) data, produced in collaboration between the Swedish mapping agency Lantmäteriet and the Swedish Maritime Administration (SMA). Due to the compound nature of shorelines, such data is afflicted by sub...

Full description

Bibliographic Details
Main Author: Hast, Isak
Format: Others
Language:English
Published: Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad 2014
Subjects:
NSL
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-18743
Description
Summary:This study investigates on the planimetric (x, y) positional accuracy of the National Shoreline (NSL) data, produced in collaboration between the Swedish mapping agency Lantmäteriet and the Swedish Maritime Administration (SMA). Due to the compound nature of shorelines, such data is afflicted by substantial positional uncertainties. In contrast, the positional accuracy requirements of NSL data are high. An apparent problem is that Lantmäteriet do not measure the positional accuracy of NSL in accordance to the NSL data product specification. In addition, currently, there is little understanding of the latent positional changes of shorelines affected by the component of time, in direct influence of the accuracy of NSL. Therefore, in accordance to the two specific aims of this study, first, an accuracy assessment technique is applied so that to measure the positional accuracy of NSL. Second, positional time changes of NSL are analysed. This study provides with an overview of potential problems and future prospects of NSL, which can be used by Lantmäteriet to improve the quality assurance of the data. Two line-based NSL data sets within the NSL classified regions of Sweden are selected. Positional uncertainties of the selected NSL areas are investigated using two distinctive methodologies. First, an accuracy assessment method is applied and accuracy metrics by the root-means-square error (RMSE) are derived. The accuracy metrics are checked toward specification and standard accuracy tolerances. Results of the assessment by the calculated RMSE metrics in comparison to tolerances indicate on an approved accuracy of tested data. Second, positional changes of NSL data are measured using a proposed space-time analysis technique. The results of the analysis reveal significant discrepancies between the two areas investigated, indicating that one of the test areas are influenced by much greater positional changes over time. The accuracy assessment method used in this study has a number of apparent constraints. One manifested restriction is the potential presence of bias in the derived accuracy metrics. In mind of current restrictions, the method to be preferred in assessment of the positional accuracy of NSL is a visual inspection towards aerial photographs. In regard of the result of the space-time analysis, one important conclusion can be made. Time-dependent positional discrepancies between the two areas investigated, indicate that Swedish coastlines are affected by divergent degrees of positional changes over time. Therefore, Lantmäteriet should consider updating NSL data at different time phases dependent on the prevailing regional changes so that to assure the currently specified positional accuracy of the entire data structure of NSL.