Summary: | This project is mainly based on mosaicing of images and similarity measurements with different methods. The map of a floor is created from a database of small-images that have been captured by a camera-mounted robot scanning the wooden floor of a living room. We call this ground mapping. After the ground mapping, the robot can achieve self-positioning on the map by using novel small images it captures as it displaces on the ground. Similarity measurements based on the Schwartz inequality have been used to achieve the ground mapping, as well as to position the robot once the ground map is available. Because the natural light affects the gray value of images, this effect must be accounted for in the envisaged similarity measurements. A new approach to mosaicing is suggested. It uses the local texture orientation, instead of the original gray values, in ground mapping as well as in positioning. Additionally, we report on ground mapping results using other features, gray-values as features. The robot can find its position with few pixel errors by using the novel approach and similarity measurements based on the Schwartz inequality.
|