Summary: | Predictive Maintenance (PM) has been increasingly adopted in the Automotive industry, in the recent decades along with conventional approaches such as the Preventive Maintenance and Diagnostic/Corrective Maintenance, since it provides many advantages to estimate the failure before the actual occurrence proactively, and also being adaptive to the present status of the vehicle, in turn allowing flexible maintenance schedules for efficient repair or replacing of faulty components. PM necessitates the storage and analysis of large amounts of sensor data. This requirement can be a challenge in deploying this method on-board the vehicles due to the limited storage and computational power on the hardware of the vehicle. Hence, this thesis seeks to obtain low dimensional descriptive features from high dimensional data using Representation Learning. This low dimensional representation will be used for predicting vehicle faults, specifically Turbocharger related failures. Since the Logged Vehicle Data (LVD) was base on all the data utilized in this thesis, it allowed for the evaluation of large populations of trucks without requiring additional measuring devices and facilities. The gradual degradation methodology is considered for describing vehicle condition, which allows for modeling the malfunction/ failure as a continuous process rather than a discrete flip from healthy to an unhealthy state. This approach eliminates the challenge of data imbalance of healthy and unhealthy samples. Two important hypotheses are presented. Firstly, Parallel StackedClassical Autoencoders would produce better representations com-pared to individual Autoencoders. Secondly, employing Learned Em-beddings on Categorical Variables would improve the performance of the Dimensionality reduction. Based on these hypotheses, a model architecture is proposed and is developed on the LVD. The model is shown to achieve good performance, and in close standards to the previous state-of-the-art research. This thesis, finally, illustrates the potential to apply parallel stacked architectures with Learned Embeddings for the Categorical features, and a combination of feature selection and extraction for numerical features, to predict the Remaining Useful Life (RUL) of a vehicle, in the context of the Turbocharger. A performance improvement of 21.68% with respect to the Mean Absolute Error (MAE) loss with an 80.42% reduction in the size of data was observed.
|