The EEG of the neonatal brain : classification of background activity

The brain requires a continuous supply of oxygen and nutrients, and even a short period of reduced oxygen supply can cause severe and lifelong consequences for the affected individual. The unborn baby is fairly robust, but there are of course limits also for these individuals. The mostsensitive and...

Full description

Bibliographic Details
Main Author: Löfhede, Johan
Format: Doctoral Thesis
Language:English
Published: Högskolan i Borås, Institutionen Ingenjörshögskolan 2009
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-3533
http://nbn-resolving.de/urn:isbn:978-91-7385-339-2
id ndltd-UPSALLA1-oai-DiVA.org-hb-3533
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-hb-35332015-12-05T04:51:26ZThe EEG of the neonatal brain : classification of background activityengLöfhede, JohanHögskolan i Borås, Institutionen IngenjörshögskolanGöteborg : Chalmers University of Technology2009asphyxiahypoxiacerebralsegmentationMedicinteknikThe brain requires a continuous supply of oxygen and nutrients, and even a short period of reduced oxygen supply can cause severe and lifelong consequences for the affected individual. The unborn baby is fairly robust, but there are of course limits also for these individuals. The mostsensitive and most important organ is the brain. When the brain is deprivedof oxygen, a process can start that ultimately may lead to the death of braincells and irreparable brain damage. This process has two phases; one more orless immediate and one delayed. There is a window of time of up to 24 hourswhere action can be taken to prevent the delayed secondary damage. One recently clinically available technique is to reduce the metabolism and thereby stop the secondary damage in the brain by cooling the baby.It is important to be able to quickly diagnose hypoxic injuries and to followthe development of the processes in the brain. For this, the electroencephalogram (EEG) is an important tool. The EEG is a voltage signal that originates within the brain and that can be recorded easily andnon-invasively at bedside. The signals are, however, highly complex and require special competence to interpret, a competence that typically is not available at the intensive care unit, and particularly not continuously day and night. This thesis addresses the problem of automatic classification ofneonatal EEG and proposes methods that would be possible to use in bedside monitoring equipment for neonatal intensive care units.The thesis is a compilation of six papers. The first four deal with the segmentation of pathological signals (burst suppression) from post-asphyctic full term newborn babies. These studies investigate the use of various classification techniques, using both supervised and unsupervised learning.In paper V the scope is widened to include both classification of pathologicalactivity versus activity found in healthy babies as well as application of thesegmentation methods on the parts of the EEG signal that are found to be of the pathological type. The use of genetic algorithms for feature selection isalso investigated. In paper VI the segmentation methods are applied onsignals from pre-term babies to investigate the impact of a certain medication on the brain.The results of this thesis demonstrate ways to improve the monitoring of the brain during intensive care of newborn babies. Hopefully it will someday be implemented in monitoring equipment and help to prevent permanent brain damage in post asphyctic babies. Doctoral thesis, monographinfo:eu-repo/semantics/doctoralThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-3533urn:isbn:978-91-7385-339-2Local 2320/5740Skrifter från Högskolan i Borås, 0280-381X ; 19Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie, 0346-718X ; 3020application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic asphyxia
hypoxia
cerebral
segmentation
Medicinteknik
spellingShingle asphyxia
hypoxia
cerebral
segmentation
Medicinteknik
Löfhede, Johan
The EEG of the neonatal brain : classification of background activity
description The brain requires a continuous supply of oxygen and nutrients, and even a short period of reduced oxygen supply can cause severe and lifelong consequences for the affected individual. The unborn baby is fairly robust, but there are of course limits also for these individuals. The mostsensitive and most important organ is the brain. When the brain is deprivedof oxygen, a process can start that ultimately may lead to the death of braincells and irreparable brain damage. This process has two phases; one more orless immediate and one delayed. There is a window of time of up to 24 hourswhere action can be taken to prevent the delayed secondary damage. One recently clinically available technique is to reduce the metabolism and thereby stop the secondary damage in the brain by cooling the baby.It is important to be able to quickly diagnose hypoxic injuries and to followthe development of the processes in the brain. For this, the electroencephalogram (EEG) is an important tool. The EEG is a voltage signal that originates within the brain and that can be recorded easily andnon-invasively at bedside. The signals are, however, highly complex and require special competence to interpret, a competence that typically is not available at the intensive care unit, and particularly not continuously day and night. This thesis addresses the problem of automatic classification ofneonatal EEG and proposes methods that would be possible to use in bedside monitoring equipment for neonatal intensive care units.The thesis is a compilation of six papers. The first four deal with the segmentation of pathological signals (burst suppression) from post-asphyctic full term newborn babies. These studies investigate the use of various classification techniques, using both supervised and unsupervised learning.In paper V the scope is widened to include both classification of pathologicalactivity versus activity found in healthy babies as well as application of thesegmentation methods on the parts of the EEG signal that are found to be of the pathological type. The use of genetic algorithms for feature selection isalso investigated. In paper VI the segmentation methods are applied onsignals from pre-term babies to investigate the impact of a certain medication on the brain.The results of this thesis demonstrate ways to improve the monitoring of the brain during intensive care of newborn babies. Hopefully it will someday be implemented in monitoring equipment and help to prevent permanent brain damage in post asphyctic babies.
author Löfhede, Johan
author_facet Löfhede, Johan
author_sort Löfhede, Johan
title The EEG of the neonatal brain : classification of background activity
title_short The EEG of the neonatal brain : classification of background activity
title_full The EEG of the neonatal brain : classification of background activity
title_fullStr The EEG of the neonatal brain : classification of background activity
title_full_unstemmed The EEG of the neonatal brain : classification of background activity
title_sort eeg of the neonatal brain : classification of background activity
publisher Högskolan i Borås, Institutionen Ingenjörshögskolan
publishDate 2009
url http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-3533
http://nbn-resolving.de/urn:isbn:978-91-7385-339-2
work_keys_str_mv AT lofhedejohan theeegoftheneonatalbrainclassificationofbackgroundactivity
AT lofhedejohan eegoftheneonatalbrainclassificationofbackgroundactivity
_version_ 1718145342662246400