Deep learning i Starcraft 2 : Autoencoders för att förbättra end-to-end learning

A problem for deep learning has for a long time been complex environments. Recently end-to-end learning agents have been used to master Atari games by processing raw pixel data into features and using these features to make good decisions. This method has not had the same success in the real time st...

Full description

Bibliographic Details
Main Authors: Frick, Victor, Mattsson, Kristoffer
Format: Others
Language:Swedish
Published: 2018
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-25531
id ndltd-UPSALLA1-oai-DiVA.org-hb-25531
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-hb-255312021-06-25T05:37:09ZDeep learning i Starcraft 2 : Autoencoders för att förbättra end-to-end learningsweFrick, VictorMattsson, Kristoffer2018Computer and Information SciencesData- och informationsvetenskapA problem for deep learning has for a long time been complex environments. Recently end-to-end learning agents have been used to master Atari games by processing raw pixel data into features and using these features to make good decisions. This method has not had the same success in the real time strategy game Starcraft 2 and the authors of this paper decided to investigate the possibility of using autoencoders to train feature extractors and thereby improving the rate of learning for reinforcement learning agents. Asynchronous Advantage Actor Critic agents are used for investigating the difference and the use of the PySC2 API enables tests in the Starcraft 2 environment. The results show that the agents need more training to be able to evaluate the pros and cons of an pretrained feature extractor. However, the training time of the autoencoder was short and if it turns out to improve the performance the authors see no arguments not to use an autoencoder to pretrain a feature extractor in Starcraft 2.  Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-25531application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language Swedish
format Others
sources NDLTD
topic Computer and Information Sciences
Data- och informationsvetenskap
spellingShingle Computer and Information Sciences
Data- och informationsvetenskap
Frick, Victor
Mattsson, Kristoffer
Deep learning i Starcraft 2 : Autoencoders för att förbättra end-to-end learning
description A problem for deep learning has for a long time been complex environments. Recently end-to-end learning agents have been used to master Atari games by processing raw pixel data into features and using these features to make good decisions. This method has not had the same success in the real time strategy game Starcraft 2 and the authors of this paper decided to investigate the possibility of using autoencoders to train feature extractors and thereby improving the rate of learning for reinforcement learning agents. Asynchronous Advantage Actor Critic agents are used for investigating the difference and the use of the PySC2 API enables tests in the Starcraft 2 environment. The results show that the agents need more training to be able to evaluate the pros and cons of an pretrained feature extractor. However, the training time of the autoencoder was short and if it turns out to improve the performance the authors see no arguments not to use an autoencoder to pretrain a feature extractor in Starcraft 2. 
author Frick, Victor
Mattsson, Kristoffer
author_facet Frick, Victor
Mattsson, Kristoffer
author_sort Frick, Victor
title Deep learning i Starcraft 2 : Autoencoders för att förbättra end-to-end learning
title_short Deep learning i Starcraft 2 : Autoencoders för att förbättra end-to-end learning
title_full Deep learning i Starcraft 2 : Autoencoders för att förbättra end-to-end learning
title_fullStr Deep learning i Starcraft 2 : Autoencoders för att förbättra end-to-end learning
title_full_unstemmed Deep learning i Starcraft 2 : Autoencoders för att förbättra end-to-end learning
title_sort deep learning i starcraft 2 : autoencoders för att förbättra end-to-end learning
publishDate 2018
url http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-25531
work_keys_str_mv AT frickvictor deeplearningistarcraft2autoencodersforattforbattraendtoendlearning
AT mattssonkristoffer deeplearningistarcraft2autoencodersforattforbattraendtoendlearning
_version_ 1719412593764859904