Filtrering av e-post : Binär klassifikation med naiv Bayesiansk teknik

In this thesis we compare how different strategies in choosing attribute values affects junk mail filtering. We used two different variants of a naïve Bayesian junk mail filter. The first variant classified an e-mail by comparing it to a feature vector containing all attribute values that were found...

Full description

Bibliographic Details
Main Authors: Bünger, Sara, Nilsson, Stefan
Format: Others
Language:Swedish
Published: Högskolan i Borås, Institutionen Biblioteks- och informationsvetenskap / Bibliotekshögskolan 2007
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-18675
id ndltd-UPSALLA1-oai-DiVA.org-hb-18675
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-hb-186752019-05-01T05:15:54ZFiltrering av e-post : Binär klassifikation med naiv Bayesiansk tekniksweFiltering e-mail : Binary classification with naïve Bayesian techniqueBünger, SaraNilsson, StefanHögskolan i Borås, Institutionen Biblioteks- och informationsvetenskap / BibliotekshögskolanHögskolan i Borås, Institutionen Biblioteks- och informationsvetenskap / BibliotekshögskolanUniversity of Borås/Swedish School of Library and Information Science (SSLIS)2007automatisk klassifikationbayesianskt filterskräppostfiltreringSocial SciencesSamhällsvetenskapIn this thesis we compare how different strategies in choosing attribute values affects junk mail filtering. We used two different variants of a naïve Bayesian junk mail filter. The first variant classified an e-mail by comparing it to a feature vector containing all attribute values that were found in junk mails in the part of the e-mail collection we used for training the filter. The second variant compared an e-mail to a feature vector that consisted of the attributes that was found in ten or more junk mails in the part of the e-mail collection we used for training the filter. We used an e-mail collection that consisted of 300 e-mails, 210 of these were junk mails and 90 were legitimate e-mails. We measured the results in our study using; SP, SR and F1 and to be able to compare the two different strategies we cross validated them. The results we got in our study showed that the first strategy got higher average F1 values than our second strategy. Despite of this we believe that the second strategy is the better one. Instead of comparing the e-mail to a feature vector containing all attribute values found in junk mails, the results will be better if the filter compares the e-mail to a feature vector that contains a limited amount of attribute values. Uppsatsnivå: DStudent thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-18675Local 2320/2902Magisteruppsats i biblioteks- och informationsvetenskap vid institutionen Biblioteks- och informationsvetenskap, 1654-0247 ; 2007:132application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language Swedish
format Others
sources NDLTD
topic automatisk klassifikation
bayesianskt filter
skräppost
filtrering
Social Sciences
Samhällsvetenskap
spellingShingle automatisk klassifikation
bayesianskt filter
skräppost
filtrering
Social Sciences
Samhällsvetenskap
Bünger, Sara
Nilsson, Stefan
Filtrering av e-post : Binär klassifikation med naiv Bayesiansk teknik
description In this thesis we compare how different strategies in choosing attribute values affects junk mail filtering. We used two different variants of a naïve Bayesian junk mail filter. The first variant classified an e-mail by comparing it to a feature vector containing all attribute values that were found in junk mails in the part of the e-mail collection we used for training the filter. The second variant compared an e-mail to a feature vector that consisted of the attributes that was found in ten or more junk mails in the part of the e-mail collection we used for training the filter. We used an e-mail collection that consisted of 300 e-mails, 210 of these were junk mails and 90 were legitimate e-mails. We measured the results in our study using; SP, SR and F1 and to be able to compare the two different strategies we cross validated them. The results we got in our study showed that the first strategy got higher average F1 values than our second strategy. Despite of this we believe that the second strategy is the better one. Instead of comparing the e-mail to a feature vector containing all attribute values found in junk mails, the results will be better if the filter compares the e-mail to a feature vector that contains a limited amount of attribute values. === Uppsatsnivå: D
author Bünger, Sara
Nilsson, Stefan
author_facet Bünger, Sara
Nilsson, Stefan
author_sort Bünger, Sara
title Filtrering av e-post : Binär klassifikation med naiv Bayesiansk teknik
title_short Filtrering av e-post : Binär klassifikation med naiv Bayesiansk teknik
title_full Filtrering av e-post : Binär klassifikation med naiv Bayesiansk teknik
title_fullStr Filtrering av e-post : Binär klassifikation med naiv Bayesiansk teknik
title_full_unstemmed Filtrering av e-post : Binär klassifikation med naiv Bayesiansk teknik
title_sort filtrering av e-post : binär klassifikation med naiv bayesiansk teknik
publisher Högskolan i Borås, Institutionen Biblioteks- och informationsvetenskap / Bibliotekshögskolan
publishDate 2007
url http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-18675
work_keys_str_mv AT bungersara filtreringavepostbinarklassifikationmednaivbayesianskteknik
AT nilssonstefan filtreringavepostbinarklassifikationmednaivbayesianskteknik
AT bungersara filteringemailbinaryclassificationwithnaivebayesiantechnique
AT nilssonstefan filteringemailbinaryclassificationwithnaivebayesiantechnique
_version_ 1719022549955772416