Multi-Output Random Forests

The Random Forests ensemble predictor has proven to be well-suited for solving a multitudeof different prediction problems. In this thesis, we propose an extension to the Random Forestframework that allows Random Forests to be constructed for multi-output decision problemswith arbitrary combinations...

Full description

Bibliographic Details
Main Author: Linusson, Henrik
Format: Others
Language:English
Published: Högskolan i Borås, Institutionen Handels- och IT-högskolan 2013
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-17167
id ndltd-UPSALLA1-oai-DiVA.org-hb-17167
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-hb-171672019-05-01T05:16:32ZMulti-Output Random ForestsengLinusson, HenrikHögskolan i Borås, Institutionen Handels- och IT-högskolanUniversity of Borås/School of Business and IT2013classificationmulti-outputmulti-taskRandom ForestregressionEngineering and TechnologyTeknik och teknologierThe Random Forests ensemble predictor has proven to be well-suited for solving a multitudeof different prediction problems. In this thesis, we propose an extension to the Random Forestframework that allows Random Forests to be constructed for multi-output decision problemswith arbitrary combinations of classification and regression responses, with the goal ofincreasing predictive performance for such multi-output problems. We show that our methodfor combining decision tasks within the same decision tree reduces prediction error for mosttasks compared to single-output decision trees based on the same node impurity metrics, andprovide a comparison of different methods for combining such metrics. Program: Magisterutbildning i informatikStudent thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-17167Local 2320/12407Magisteruppsats, ; 2013MAGI04application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic classification
multi-output
multi-task
Random Forest
regression
Engineering and Technology
Teknik och teknologier
spellingShingle classification
multi-output
multi-task
Random Forest
regression
Engineering and Technology
Teknik och teknologier
Linusson, Henrik
Multi-Output Random Forests
description The Random Forests ensemble predictor has proven to be well-suited for solving a multitudeof different prediction problems. In this thesis, we propose an extension to the Random Forestframework that allows Random Forests to be constructed for multi-output decision problemswith arbitrary combinations of classification and regression responses, with the goal ofincreasing predictive performance for such multi-output problems. We show that our methodfor combining decision tasks within the same decision tree reduces prediction error for mosttasks compared to single-output decision trees based on the same node impurity metrics, andprovide a comparison of different methods for combining such metrics. === Program: Magisterutbildning i informatik
author Linusson, Henrik
author_facet Linusson, Henrik
author_sort Linusson, Henrik
title Multi-Output Random Forests
title_short Multi-Output Random Forests
title_full Multi-Output Random Forests
title_fullStr Multi-Output Random Forests
title_full_unstemmed Multi-Output Random Forests
title_sort multi-output random forests
publisher Högskolan i Borås, Institutionen Handels- och IT-högskolan
publishDate 2013
url http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-17167
work_keys_str_mv AT linussonhenrik multioutputrandomforests
_version_ 1719023100863971328