Multi-Output Random Forests
The Random Forests ensemble predictor has proven to be well-suited for solving a multitudeof different prediction problems. In this thesis, we propose an extension to the Random Forestframework that allows Random Forests to be constructed for multi-output decision problemswith arbitrary combinations...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
Högskolan i Borås, Institutionen Handels- och IT-högskolan
2013
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-17167 |
id |
ndltd-UPSALLA1-oai-DiVA.org-hb-17167 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-hb-171672019-05-01T05:16:32ZMulti-Output Random ForestsengLinusson, HenrikHögskolan i Borås, Institutionen Handels- och IT-högskolanUniversity of Borås/School of Business and IT2013classificationmulti-outputmulti-taskRandom ForestregressionEngineering and TechnologyTeknik och teknologierThe Random Forests ensemble predictor has proven to be well-suited for solving a multitudeof different prediction problems. In this thesis, we propose an extension to the Random Forestframework that allows Random Forests to be constructed for multi-output decision problemswith arbitrary combinations of classification and regression responses, with the goal ofincreasing predictive performance for such multi-output problems. We show that our methodfor combining decision tasks within the same decision tree reduces prediction error for mosttasks compared to single-output decision trees based on the same node impurity metrics, andprovide a comparison of different methods for combining such metrics. Program: Magisterutbildning i informatikStudent thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-17167Local 2320/12407Magisteruppsats, ; 2013MAGI04application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
classification multi-output multi-task Random Forest regression Engineering and Technology Teknik och teknologier |
spellingShingle |
classification multi-output multi-task Random Forest regression Engineering and Technology Teknik och teknologier Linusson, Henrik Multi-Output Random Forests |
description |
The Random Forests ensemble predictor has proven to be well-suited for solving a multitudeof different prediction problems. In this thesis, we propose an extension to the Random Forestframework that allows Random Forests to be constructed for multi-output decision problemswith arbitrary combinations of classification and regression responses, with the goal ofincreasing predictive performance for such multi-output problems. We show that our methodfor combining decision tasks within the same decision tree reduces prediction error for mosttasks compared to single-output decision trees based on the same node impurity metrics, andprovide a comparison of different methods for combining such metrics. === Program: Magisterutbildning i informatik |
author |
Linusson, Henrik |
author_facet |
Linusson, Henrik |
author_sort |
Linusson, Henrik |
title |
Multi-Output Random Forests |
title_short |
Multi-Output Random Forests |
title_full |
Multi-Output Random Forests |
title_fullStr |
Multi-Output Random Forests |
title_full_unstemmed |
Multi-Output Random Forests |
title_sort |
multi-output random forests |
publisher |
Högskolan i Borås, Institutionen Handels- och IT-högskolan |
publishDate |
2013 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-17167 |
work_keys_str_mv |
AT linussonhenrik multioutputrandomforests |
_version_ |
1719023100863971328 |