A novel robust and intelligent control based approach for human lower limb rehabilitation via neuromuscular electrical stimulation /
Orientador: Aparecido Augusto de Carvalho === Abstract: In the last few years, several studies have been carried out showing that neuromuscular electrical stimulation (NMES) can produce good therapeutic results in patients with spinal cord injury (SCI). This research introduces a new robust and inte...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | Portuguese |
Published: |
Ilha Solteira,
2019
|
Subjects: | |
Online Access: | http://hdl.handle.net/11449/190755 |
id |
ndltd-UNESP-oai-www.athena.biblioteca.unesp.br-UEP01-000926145 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UNESP-oai-www.athena.biblioteca.unesp.br-UEP01-0009261452019-10-20T10:43:13ZtextporTL/UNESPArcolezi, Héber HwangA novel robust and intelligent control based approach for human lower limb rehabilitation via neuromuscular electrical stimulation /Ilha Solteira,2019f.Orientador: Aparecido Augusto de CarvalhoAbstract: In the last few years, several studies have been carried out showing that neuromuscular electrical stimulation (NMES) can produce good therapeutic results in patients with spinal cord injury (SCI). This research introduces a new robust and intelligent control-based methodology for human lower limb rehabilitation via NMES using a continuous-time control technique named robust integral of the sign of the error (RISE). Although in the literature the RISE controller has shown good results without any fine-tuning method, a trial and error approach would quickly lead to muscle fatigue in SCI patients. Therefore, it was shown in this study that the control performance for robustly tracking a reference signal can be improved through the proposed approach by providing an intelligent tuning for each voluntary. Simulation results with a mathematical model and eight identified subjects from the literature are provided, and real experiments are performed with seven healthy and two paraplegic subjects. Besides, this research introduces the application of deep and dynamic neural networks namely the multilayer perceptron, a simple recurrent neural network, and the Long Short-Term memory architecture, to identify the nonlinear and time-varying relationship between the supplied NMES and achieved angular position. Identification results indicate good fitting to data and very low mean square error using few data for training, proving to be very prospective methods for proposing control-oriented ... (Complete abstract click electronic access below)Resumo: Nos últimos anos, vários estudos foram realizados mostrando que a estimulação elétrica neuromuscular (EENM) pode produzir bons resultados terapêuticos em pacientes com lesão medular (LM). Esta pesquisa introduz uma nova metodologia robusta e inteligente baseada em controle para a reabilitação de membros inferiores humanos via EENM usando uma técnica de controle de tempo contínuo chamada robust integral of the sign of the error (RISE). Embora na literatura o controlador RISE tem demonstrado bons resultados sem qualquer método de ajuste fino, uma abordagem de tentativa e erro poderia levar rapidamente à fadiga muscular em pacientes com LM. Portanto, foi mostrado nesse estudo que o desempenho do controle para rastrear com robustez um sinal de referência pode ser melhorado através da abordagem proposta, fornecendo um ajuste inteligente para cada voluntário. Resultados de simulação com um modelo matemático e oito sujeitos identificados da literatura são fornecidos, e experimentos reais são feitos com sete indivíduos saudáveis e dois paraplégicos. Além disso, esta pesquisa introduz a aplicação de redes neurais profundas e dinâmicas, especificamente o perceptron multicamadas, uma rede neural recorrente simples e a arquitetura Long Short-Term Memory, para identificar a relação não-linear e variante no tempo entre a EENM fornecida e a posição angular alcançada. Os resultados de identificação indicam boa adaptação aos dados e erro quadrático médio muito baixo usando poucos dados para... (Resumo completo, clicar acesso eletrônico abaixo)Sistema requerido: Adobe Acrobat ReaderNeuromuscular electrical stimulationKnee joint controlRISE controllerImproved genetic algorithmRecurrent neural networksEstimulação elétrica neuromuscularControle da articulação do joelhoControlador RISEAlgoritmo genético melhoradoRedes neurais recorrentesMestreUniversidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Ilha Solteira).http://hdl.handle.net/11449/190755 |
collection |
NDLTD |
language |
Portuguese |
format |
Others
|
sources |
NDLTD |
topic |
Neuromuscular electrical stimulation Knee joint control RISE controller Improved genetic algorithm Recurrent neural networks Estimulação elétrica neuromuscular Controle da articulação do joelho Controlador RISE Algoritmo genético melhorado Redes neurais recorrentes |
spellingShingle |
Neuromuscular electrical stimulation Knee joint control RISE controller Improved genetic algorithm Recurrent neural networks Estimulação elétrica neuromuscular Controle da articulação do joelho Controlador RISE Algoritmo genético melhorado Redes neurais recorrentes Arcolezi, Héber Hwang A novel robust and intelligent control based approach for human lower limb rehabilitation via neuromuscular electrical stimulation / |
description |
Orientador: Aparecido Augusto de Carvalho === Abstract: In the last few years, several studies have been carried out showing that neuromuscular electrical stimulation (NMES) can produce good therapeutic results in patients with spinal cord injury (SCI). This research introduces a new robust and intelligent control-based methodology for human lower limb rehabilitation via NMES using a continuous-time control technique named robust integral of the sign of the error (RISE). Although in the literature the RISE controller has shown good results without any fine-tuning method, a trial and error approach would quickly lead to muscle fatigue in SCI patients. Therefore, it was shown in this study that the control performance for robustly tracking a reference signal can be improved through the proposed approach by providing an intelligent tuning for each voluntary. Simulation results with a mathematical model and eight identified subjects from the literature are provided, and real experiments are performed with seven healthy and two paraplegic subjects. Besides, this research introduces the application of deep and dynamic neural networks namely the multilayer perceptron, a simple recurrent neural network, and the Long Short-Term memory architecture, to identify the nonlinear and time-varying relationship between the supplied NMES and achieved angular position. Identification results indicate good fitting to data and very low mean square error using few data for training, proving to be very prospective methods for proposing control-oriented ... (Complete abstract click electronic access below) === Resumo: Nos últimos anos, vários estudos foram realizados mostrando que a estimulação elétrica neuromuscular (EENM) pode produzir bons resultados terapêuticos em pacientes com lesão medular (LM). Esta pesquisa introduz uma nova metodologia robusta e inteligente baseada em controle para a reabilitação de membros inferiores humanos via EENM usando uma técnica de controle de tempo contínuo chamada robust integral of the sign of the error (RISE). Embora na literatura o controlador RISE tem demonstrado bons resultados sem qualquer método de ajuste fino, uma abordagem de tentativa e erro poderia levar rapidamente à fadiga muscular em pacientes com LM. Portanto, foi mostrado nesse estudo que o desempenho do controle para rastrear com robustez um sinal de referência pode ser melhorado através da abordagem proposta, fornecendo um ajuste inteligente para cada voluntário. Resultados de simulação com um modelo matemático e oito sujeitos identificados da literatura são fornecidos, e experimentos reais são feitos com sete indivíduos saudáveis e dois paraplégicos. Além disso, esta pesquisa introduz a aplicação de redes neurais profundas e dinâmicas, especificamente o perceptron multicamadas, uma rede neural recorrente simples e a arquitetura Long Short-Term Memory, para identificar a relação não-linear e variante no tempo entre a EENM fornecida e a posição angular alcançada. Os resultados de identificação indicam boa adaptação aos dados e erro quadrático médio muito baixo usando poucos dados para... (Resumo completo, clicar acesso eletrônico abaixo) === Mestre |
author2 |
Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Ilha Solteira). |
author_facet |
Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Ilha Solteira). Arcolezi, Héber Hwang |
author |
Arcolezi, Héber Hwang |
author_sort |
Arcolezi, Héber Hwang |
title |
A novel robust and intelligent control based approach for human lower limb rehabilitation via neuromuscular electrical stimulation / |
title_short |
A novel robust and intelligent control based approach for human lower limb rehabilitation via neuromuscular electrical stimulation / |
title_full |
A novel robust and intelligent control based approach for human lower limb rehabilitation via neuromuscular electrical stimulation / |
title_fullStr |
A novel robust and intelligent control based approach for human lower limb rehabilitation via neuromuscular electrical stimulation / |
title_full_unstemmed |
A novel robust and intelligent control based approach for human lower limb rehabilitation via neuromuscular electrical stimulation / |
title_sort |
novel robust and intelligent control based approach for human lower limb rehabilitation via neuromuscular electrical stimulation / |
publisher |
Ilha Solteira, |
publishDate |
2019 |
url |
http://hdl.handle.net/11449/190755 |
work_keys_str_mv |
AT arcoleziheberhwang anovelrobustandintelligentcontrolbasedapproachforhumanlowerlimbrehabilitationvianeuromuscularelectricalstimulation AT arcoleziheberhwang novelrobustandintelligentcontrolbasedapproachforhumanlowerlimbrehabilitationvianeuromuscularelectricalstimulation |
_version_ |
1719272525188300800 |