Summary: | Orientador: Jose Roberto Sanches Mantovani === Resumo: Neste trabalho são propostos modelos matemáticos determinístico e estocástico de programação cônica de segunda ordem em coordenadas retangulares para o problema de fluxo de potência ótimo de geração e controle de potência reativa no sistemas elétricos de potência, considerando as minimização dos custos de geração de energia, perdas ativas da rede e emissão de poluentes no meio ambiente. Os modelos contemplam as principais características físicas e econômicas do problema estudado, assim como os limites operacionais do sistema elétrico. Os modelos são programados em linguagem AMPL e suas soluções são obtidas através do solver comercial CPLEX. Os sistemas testes IEEE30, IEEE118 e ACTIVSg200 são utilizados nas simulações computacionais dos modelos propostos. Os resultados obtidos pelo modelo determinístico desenvolvido são validados através de comparações com os resultados fornecidos pelo software MATPOWER , onde ambos consideram apenas a existência de gerações termoelétricas. No modelo estocástico utiliza-se a técnica de geração de cenários e considera-se um período de um ano (8760 horas), e geradores que utilizam fontes de geração renováveis e não renováveis. === Abstract: In this work we propose deterministic and stochastic mathematical models of second order conical programming in rectangular coordinates for the optimal power flow problem of reactive power generation and control in electric power systems, considering the minimization of energy generation costs, losses networks and emission of pollutants into the environment. The models contemplate the main physical and economic characteristics of the studied problem, as well as the operational limits of the electric system. The models are programmed in AMPL language and their solutions are obtained through the commercial solver CPLEX. The IEEE30, IEEE118 and ACTIVSg200 test systems are used in the computer simulations of the proposed models. The results obtained by the deterministic model developed are validated through comparisons with the results provided by the software MATPOWERR , where both consider only the existence of thermoelectric generations. The stochastic model uses the scenario generation technique and considers a period of one year (8760 hours), and generators using renewable and non-renewable generation sources. === Mestre
|