Formação de pequenos satélites e anéis de poeira /

Orientador: Rafael Sfair de Oliveira === Resumo: A formação de alguns arcos dos anéis planetários pode estar relacionada às colisões de partículas interplanetárias com seus satélites, fragmentando-os e produzindo corpos menores. De modo sucessivo, estes fragmentos podem sofrer novas colisões e event...

Full description

Bibliographic Details
Main Author: Lattari, Victor Correa.
Other Authors: Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Guaratinguetá).
Format: Others
Language:Portuguese
Published: Guaratinguetá, 2019
Subjects:
Online Access:http://hdl.handle.net/11449/181828
id ndltd-UNESP-oai-www.athena.biblioteca.unesp.br-UEP01-000915790
record_format oai_dc
spelling ndltd-UNESP-oai-www.athena.biblioteca.unesp.br-UEP01-0009157902019-05-01T04:39:44ZtextporTL/UNESPLattari, Victor Correa.Formação de pequenos satélites e anéis de poeira /Guaratinguetá,2019f.Orientador: Rafael Sfair de OliveiraResumo: A formação de alguns arcos dos anéis planetários pode estar relacionada às colisões de partículas interplanetárias com seus satélites, fragmentando-os e produzindo corpos menores. De modo sucessivo, estes fragmentos podem sofrer novas colisões e eventualmente gerar partículas de poeira. Por outro lado, os corpos macroscópicos (da ordem de metros) imersos no anel podem colidir entre si e aglutinar- se de modo a gerar novos objetos maiores. A existência destes arcos é creditada a presença de um satélite perturbador que os confina em um ressonância de corrotação. No caso do arco do anel G de Saturno, este é confinado por uma uma ressonância excêntrica 7:6 de corrotação com o satélite Mimas. Hedman et al. (2010) citam que o arco do anel G é majoritariamente composto por partículas da ordem de micrômetros. Neste caso, as forças perturbativas, tais como a pressão de radiação e a força eletromagnéticas, são significativas e tendem a reduzir o tempo de vida destas partículas nesta região. Para explicar a estabilidade do arco Hedman et al. (2010) utilizaram o pequeno satélite Aegaeon (imerso no arco) que poderia ser uma fonte do material das partículas micrométricas imersas no arco via colisões de partículas interplanetárias com Aegaeon. Entretanto, Madeira et al. (2018) exploraram o efeito da pressão de radiação solar e mostraram que o tempo de vida das partículas micrométricas no arco é menos de 40 anos e que o satélite Aegaeon não poderia ser fonte de material e manter a quantidade... (Resumo completo, clicar acesso eletrônico abaixo)Abstract: Some planetary rings exhibit denser regions called arcs, and the existence of these arcs is credited by the presence of a disturbing satellite that confines the particles in a corotation resonance. The formation of the planetary ring arc can be related with the collisions between interplanetary particles with an embedded satellite, or the break up of a moon into minor bodies. Successively, these bodies may experience new collisions that eventually create dust particles. Meanwhile, the macroscopic bodies can collide among themselves and merge, resulting in large bodies. For the Saturn’s G ring’s arc, it is confined by a 7:6 corotation resonance with the satellite Mimas. Hedman et al. (2010) showed this arc is composed mostly of micrometers particles, a configuration that perturbative forces are significant and decrease the lifetime of the structure. To explain the stability of this arc, they proposed that the satellite Aegaeon could be a source of the material of the dust by collisions within interplanetary particles. However, Madeira et al. (2018) studied the solar radiation pressure and showed that the lifetime of the particles in less than 40 years and that the satellite Aegaeon cannot be a source. Therefore, another mechanism is necessary to explain the arc. To do so, one can use information derived by the LEMMS (Magnetospheric Imaging Instrument’s LowEnergy), an instrument from that Cassini spacecraft that detected an energy drop from electrons in this region, inferring t... (Complete abstract click electronic access below)Sistema requerido: Adobe Acrobat ReaderAegaeonArcos de anéis planetáriosAnel GRessonância de corrotaçãoSatelites.Planetas - ÓrbitasMecânica CelestesG ringPlanetary ring arcsCorotation resonanceMestreUniversidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Guaratinguetá).http://hdl.handle.net/11449/181828
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic Aegaeon
Arcos de anéis planetários
Anel G
Ressonância de corrotação
Satelites.
Planetas - Órbitas
Mecânica Celestes
G ring
Planetary ring arcs
Corotation resonance
spellingShingle Aegaeon
Arcos de anéis planetários
Anel G
Ressonância de corrotação
Satelites.
Planetas - Órbitas
Mecânica Celestes
G ring
Planetary ring arcs
Corotation resonance
Lattari, Victor Correa.
Formação de pequenos satélites e anéis de poeira /
description Orientador: Rafael Sfair de Oliveira === Resumo: A formação de alguns arcos dos anéis planetários pode estar relacionada às colisões de partículas interplanetárias com seus satélites, fragmentando-os e produzindo corpos menores. De modo sucessivo, estes fragmentos podem sofrer novas colisões e eventualmente gerar partículas de poeira. Por outro lado, os corpos macroscópicos (da ordem de metros) imersos no anel podem colidir entre si e aglutinar- se de modo a gerar novos objetos maiores. A existência destes arcos é creditada a presença de um satélite perturbador que os confina em um ressonância de corrotação. No caso do arco do anel G de Saturno, este é confinado por uma uma ressonância excêntrica 7:6 de corrotação com o satélite Mimas. Hedman et al. (2010) citam que o arco do anel G é majoritariamente composto por partículas da ordem de micrômetros. Neste caso, as forças perturbativas, tais como a pressão de radiação e a força eletromagnéticas, são significativas e tendem a reduzir o tempo de vida destas partículas nesta região. Para explicar a estabilidade do arco Hedman et al. (2010) utilizaram o pequeno satélite Aegaeon (imerso no arco) que poderia ser uma fonte do material das partículas micrométricas imersas no arco via colisões de partículas interplanetárias com Aegaeon. Entretanto, Madeira et al. (2018) exploraram o efeito da pressão de radiação solar e mostraram que o tempo de vida das partículas micrométricas no arco é menos de 40 anos e que o satélite Aegaeon não poderia ser fonte de material e manter a quantidade... (Resumo completo, clicar acesso eletrônico abaixo) === Abstract: Some planetary rings exhibit denser regions called arcs, and the existence of these arcs is credited by the presence of a disturbing satellite that confines the particles in a corotation resonance. The formation of the planetary ring arc can be related with the collisions between interplanetary particles with an embedded satellite, or the break up of a moon into minor bodies. Successively, these bodies may experience new collisions that eventually create dust particles. Meanwhile, the macroscopic bodies can collide among themselves and merge, resulting in large bodies. For the Saturn’s G ring’s arc, it is confined by a 7:6 corotation resonance with the satellite Mimas. Hedman et al. (2010) showed this arc is composed mostly of micrometers particles, a configuration that perturbative forces are significant and decrease the lifetime of the structure. To explain the stability of this arc, they proposed that the satellite Aegaeon could be a source of the material of the dust by collisions within interplanetary particles. However, Madeira et al. (2018) studied the solar radiation pressure and showed that the lifetime of the particles in less than 40 years and that the satellite Aegaeon cannot be a source. Therefore, another mechanism is necessary to explain the arc. To do so, one can use information derived by the LEMMS (Magnetospheric Imaging Instrument’s LowEnergy), an instrument from that Cassini spacecraft that detected an energy drop from electrons in this region, inferring t... (Complete abstract click electronic access below) === Mestre
author2 Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Guaratinguetá).
author_facet Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Guaratinguetá).
Lattari, Victor Correa.
author Lattari, Victor Correa.
author_sort Lattari, Victor Correa.
title Formação de pequenos satélites e anéis de poeira /
title_short Formação de pequenos satélites e anéis de poeira /
title_full Formação de pequenos satélites e anéis de poeira /
title_fullStr Formação de pequenos satélites e anéis de poeira /
title_full_unstemmed Formação de pequenos satélites e anéis de poeira /
title_sort formação de pequenos satélites e anéis de poeira /
publisher Guaratinguetá,
publishDate 2019
url http://hdl.handle.net/11449/181828
work_keys_str_mv AT lattarivictorcorrea formacaodepequenossateliteseaneisdepoeira
_version_ 1719021521646649344