Variabilidade espacial de níveis freáticos do Sistema Aquífero Bauru por meio de modelo híbrido multivariado /
Orientador: Rodrigo Lilla Manzione === Banca: Diego Augusto de Campos Moraes === Banca: Márcia Pereira Sartori === Banca: Didier Gastmans === Banca: Mauricio Moreira dos Santos === Resumo: A geoestatística permite inferir valores desconhecidos que apresentam estrutura espacial, auxiliando, assim, na...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | Portuguese |
Published: |
Botucatu,
2018
|
Subjects: | |
Online Access: | http://hdl.handle.net/11449/166386 |
id |
ndltd-UNESP-oai-www.athena.biblioteca.unesp.br-UEP01-000910679 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UNESP-oai-www.athena.biblioteca.unesp.br-UEP01-0009106792019-04-10T17:00:35ZtextporTL/UNESPNava, Aira.Variabilidade espacial de níveis freáticos do Sistema Aquífero Bauru por meio de modelo híbrido multivariado /Botucatu,2018112 p. :Orientador: Rodrigo Lilla ManzioneBanca: Diego Augusto de Campos MoraesBanca: Márcia Pereira SartoriBanca: Didier GastmansBanca: Mauricio Moreira dos SantosResumo: A geoestatística permite inferir valores desconhecidos que apresentam estrutura espacial, auxiliando, assim, na descrição dos fenômenos naturais. A utilização de seus interpoladores permite um melhor entendimento do objeto de estudo, pois seu embasamento matemático garante a confiabilidade do método e sua utilização associada ao entendimento físico do problema proporciona resultados significativos. As ferramentas geoestatísticas vem sendo amplamente utilizadas no monitoramento e nos estudos dos recursos hídricos. Partindo-se da hipótese de que os níveis de água subterrânea podem ser explicados por um modelo determinístico e espacializados por ferramentas da geoestatística, o trabalho teve como objetivo o mapeamento do lençol freático através de um modelo híbrido de regressão-krigagem. Dados relacionados ao relevo, ao solo, às series de monitoramento da água e à vegetação, obtidos por sensoriamento remoto, totalizaram 21 variáveis preditivas dos níveis do lençol freático. As informações sobre as águas subterrâneas foram coletadas por meio de 56 piezômetros e as informações sobre os solos foram coletadas em 113 pontos amostrais distribuídos irregularmente nas bacias hidrográficas dos rios Guarantã, Bugre, Boi, Santana e Passarinho. A seleção das variáveis de maior relevância para o ajuste do modelo de regressão linear foi realizada por meio da análise de componentes principais, que determinou aquelas com maior variabilidade. Os resultados mostraram robusto ajuste aos dados pelo... (Resumo completo, clicar acesso eletrônico abaixo)ABSTRACT: Geostatistics allows inferring unknown values with spatial structure, supporting the natural phenomena description. Geostatistical interpolators increase the understanding about the studied object, since its mathematical background ensures reliability to the method and its use associated to the physical understanding of the problem provides significant results. Geostatistical tools have been widely used in groundwater monitoring and studies. From the hypothesis that groundwater levels can be explained by a deterministic model and spatialized with geostatistics, this work aimed to map the water table through a hybrid regression-kriging model. Soil, topographic, water and vegetation monitoring data (obtained by remote sensing) were used as predictive variables of groundwater levels. Information were collected at Guarantã, Bugre, Boi, Santana and Passarinho watersheds. The most relevant variables for the multiple regression model were chosen through principal components analysis, which determined those with greater variability. The results indicated a robust fit to the data by the model and robust predictive capacity for new observations. The adjustment of the variograms allowed the ordinary kriging of the mean water levels and the residuals of the deterministic model, allowing a final prediction map of the groundwater.Sistema requerido: Adobe Acrobat ReaderÁguas subterrâneas.Geologia - Métodos estatísticos.Krigagem.GroundwaterDoutorUniversidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Ciências Agronômicas (Campus de Botucatu).http://hdl.handle.net/11449/166386 |
collection |
NDLTD |
language |
Portuguese |
format |
Others
|
sources |
NDLTD |
topic |
Águas subterrâneas. Geologia - Métodos estatísticos. Krigagem. Groundwater |
spellingShingle |
Águas subterrâneas. Geologia - Métodos estatísticos. Krigagem. Groundwater Nava, Aira. Variabilidade espacial de níveis freáticos do Sistema Aquífero Bauru por meio de modelo híbrido multivariado / |
description |
Orientador: Rodrigo Lilla Manzione === Banca: Diego Augusto de Campos Moraes === Banca: Márcia Pereira Sartori === Banca: Didier Gastmans === Banca: Mauricio Moreira dos Santos === Resumo: A geoestatística permite inferir valores desconhecidos que apresentam estrutura espacial, auxiliando, assim, na descrição dos fenômenos naturais. A utilização de seus interpoladores permite um melhor entendimento do objeto de estudo, pois seu embasamento matemático garante a confiabilidade do método e sua utilização associada ao entendimento físico do problema proporciona resultados significativos. As ferramentas geoestatísticas vem sendo amplamente utilizadas no monitoramento e nos estudos dos recursos hídricos. Partindo-se da hipótese de que os níveis de água subterrânea podem ser explicados por um modelo determinístico e espacializados por ferramentas da geoestatística, o trabalho teve como objetivo o mapeamento do lençol freático através de um modelo híbrido de regressão-krigagem. Dados relacionados ao relevo, ao solo, às series de monitoramento da água e à vegetação, obtidos por sensoriamento remoto, totalizaram 21 variáveis preditivas dos níveis do lençol freático. As informações sobre as águas subterrâneas foram coletadas por meio de 56 piezômetros e as informações sobre os solos foram coletadas em 113 pontos amostrais distribuídos irregularmente nas bacias hidrográficas dos rios Guarantã, Bugre, Boi, Santana e Passarinho. A seleção das variáveis de maior relevância para o ajuste do modelo de regressão linear foi realizada por meio da análise de componentes principais, que determinou aquelas com maior variabilidade. Os resultados mostraram robusto ajuste aos dados pelo... (Resumo completo, clicar acesso eletrônico abaixo) === ABSTRACT: Geostatistics allows inferring unknown values with spatial structure, supporting the natural phenomena description. Geostatistical interpolators increase the understanding about the studied object, since its mathematical background ensures reliability to the method and its use associated to the physical understanding of the problem provides significant results. Geostatistical tools have been widely used in groundwater monitoring and studies. From the hypothesis that groundwater levels can be explained by a deterministic model and spatialized with geostatistics, this work aimed to map the water table through a hybrid regression-kriging model. Soil, topographic, water and vegetation monitoring data (obtained by remote sensing) were used as predictive variables of groundwater levels. Information were collected at Guarantã, Bugre, Boi, Santana and Passarinho watersheds. The most relevant variables for the multiple regression model were chosen through principal components analysis, which determined those with greater variability. The results indicated a robust fit to the data by the model and robust predictive capacity for new observations. The adjustment of the variograms allowed the ordinary kriging of the mean water levels and the residuals of the deterministic model, allowing a final prediction map of the groundwater. === Doutor |
author2 |
Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Ciências Agronômicas (Campus de Botucatu). |
author_facet |
Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Ciências Agronômicas (Campus de Botucatu). Nava, Aira. |
author |
Nava, Aira. |
author_sort |
Nava, Aira. |
title |
Variabilidade espacial de níveis freáticos do Sistema Aquífero Bauru por meio de modelo híbrido multivariado / |
title_short |
Variabilidade espacial de níveis freáticos do Sistema Aquífero Bauru por meio de modelo híbrido multivariado / |
title_full |
Variabilidade espacial de níveis freáticos do Sistema Aquífero Bauru por meio de modelo híbrido multivariado / |
title_fullStr |
Variabilidade espacial de níveis freáticos do Sistema Aquífero Bauru por meio de modelo híbrido multivariado / |
title_full_unstemmed |
Variabilidade espacial de níveis freáticos do Sistema Aquífero Bauru por meio de modelo híbrido multivariado / |
title_sort |
variabilidade espacial de níveis freáticos do sistema aquífero bauru por meio de modelo híbrido multivariado / |
publisher |
Botucatu, |
publishDate |
2018 |
url |
http://hdl.handle.net/11449/166386 |
work_keys_str_mv |
AT navaaira variabilidadeespacialdeniveisfreaticosdosistemaaquiferobaurupormeiodemodelohibridomultivariado |
_version_ |
1719017186482192384 |