Wavelets e polinômios com coeficientes de Fibonacci /

Orientador: Francisco Villarreal Alvarado === Resumo: Existem diferentes tipos de funções wavelets que podem ser utilizadas na Transformada Wavelet. Na maioria das vezes, a função wavelet escolhida para a análise de um determinado sinal vai ser aquela que melhor se ajusta no domínio tempo-frequência...

Full description

Bibliographic Details
Main Author: Gossler, Fabrício Ely
Other Authors: Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Ilha Solteira).
Format: Others
Language:Portuguese
Published: Ilha Solteira, 2016
Subjects:
Online Access:http://hdl.handle.net/11449/148776
Description
Summary:Orientador: Francisco Villarreal Alvarado === Resumo: Existem diferentes tipos de funções wavelets que podem ser utilizadas na Transformada Wavelet. Na maioria das vezes, a função wavelet escolhida para a análise de um determinado sinal vai ser aquela que melhor se ajusta no domínio tempo-frequência do mesmo. Existem vários tipos de funções wavelets que podem ser escolhidas para certas aplicações, sendo que algumas destas pertencem a conjuntos específicos denominados de famílias wavelets, tais como a Haar, Daubechies, Symlets, Morlet, Meyer e Gaussianas. Nesse trabalho é apresentada uma nova família de funções wavelets geradas a partir de polinômios com coeficientes de Fibonacci (FCPs). Essa família recebe o nome de Golden, e cada membro desta é obtido por uma derivada de ordem n do quociente entre dois FCPs distintos. As Golden wavelets foram deduzidas através das observações de que, em alguns casos, a derivada de ordem n, do quociente entre dois FCPs distintos, resulta em uma função que possui as características de uma onda de duração curta. Como aplicação, algumas wavelets apresentadas no decorrer deste trabalho são utilizadas na classificação de arritmias cardíacas em sinais de eletrocardiograma, que foram extraídos da base de dados do MIT-BIH arrhythmia database. === Mestre