Light-Induced Relocalization of the Photoreceptor G Protein Transducin is Mediated by Binding Partner-Restricted Diffusion: New Insights into G Protein Subunit Dissociation

Phototransduction is a well characterized system for study of G protein coupled receptor (GPCR) signaling. The GPCR rhodopsin couples to the heterotrimeric G protein transducin. Light-stimulated activation of transducin in turn activates phosphodiesterase (PDE), leading to closure to cGMP-gated chan...

Full description

Bibliographic Details
Main Author: Rosenzweig, Derek Hadar
Format: Others
Published: Scholarly Repository 2008
Subjects:
Online Access:http://scholarlyrepository.miami.edu/oa_dissertations/172
id ndltd-UMIAMI-oai-scholarlyrepository.miami.edu-oa_dissertations-1171
record_format oai_dc
spelling ndltd-UMIAMI-oai-scholarlyrepository.miami.edu-oa_dissertations-11712011-12-13T15:38:55Z Light-Induced Relocalization of the Photoreceptor G Protein Transducin is Mediated by Binding Partner-Restricted Diffusion: New Insights into G Protein Subunit Dissociation Rosenzweig, Derek Hadar Phototransduction is a well characterized system for study of G protein coupled receptor (GPCR) signaling. The GPCR rhodopsin couples to the heterotrimeric G protein transducin. Light-stimulated activation of transducin in turn activates phosphodiesterase (PDE), leading to closure to cGMP-gated channels and inhibition of glutamate release. Rod and cone photoreceptors are highly polarized neurons consisting of the outer segment (OS) where phototransduction biochemistry occurs, the inner segment containing mitochondria and other organelles, the nuclear layer, an axon, and a glutamatergic synapse. Upon illumination, activated G protein transducin redistributes from the rod OS (where it is localized in the dark) to the inner compartments of the cell. Interestingly, cone transducin does not translocate in light. Opposite to this, visual arrestin migrates from the inner compartments to the OS, where it binds to rhodopsin. Previous reports from other groups and our lab argue for either an active or passive mechanism for transducin and arrestin redistribution. Our lab has shown that arrestin migration occurs by diffusion which is restricted by molecular sinks (Nair et al, 2005b). The focus of my dissertation was to unravel the molecular mechanism of rod transducin translocation. Specifically, I found energy (ATP) was not required for transducin movement within photoreceptors. Also, I found that the disc membranes of the rod outer segments as well as protein-protein interactions with retinal guanylate cyclase serve to restrict transducin diffusion through the cell. In addition, I used the insights gained from these studies of transducin to re-examine the relationship of other G proteins' subcellular localization and signal transduction. Ultimately, I found that most G proteins do not undergo subunit dissociation under physiological activating conditions. 2008-12-04 text application/pdf http://scholarlyrepository.miami.edu/oa_dissertations/172 Open Access Dissertations Scholarly Repository G Protein Signal Transduction Subcellular Localization Photoreceptors Neurons Transducin
collection NDLTD
format Others
sources NDLTD
topic G Protein
Signal Transduction
Subcellular Localization
Photoreceptors
Neurons
Transducin
spellingShingle G Protein
Signal Transduction
Subcellular Localization
Photoreceptors
Neurons
Transducin
Rosenzweig, Derek Hadar
Light-Induced Relocalization of the Photoreceptor G Protein Transducin is Mediated by Binding Partner-Restricted Diffusion: New Insights into G Protein Subunit Dissociation
description Phototransduction is a well characterized system for study of G protein coupled receptor (GPCR) signaling. The GPCR rhodopsin couples to the heterotrimeric G protein transducin. Light-stimulated activation of transducin in turn activates phosphodiesterase (PDE), leading to closure to cGMP-gated channels and inhibition of glutamate release. Rod and cone photoreceptors are highly polarized neurons consisting of the outer segment (OS) where phototransduction biochemistry occurs, the inner segment containing mitochondria and other organelles, the nuclear layer, an axon, and a glutamatergic synapse. Upon illumination, activated G protein transducin redistributes from the rod OS (where it is localized in the dark) to the inner compartments of the cell. Interestingly, cone transducin does not translocate in light. Opposite to this, visual arrestin migrates from the inner compartments to the OS, where it binds to rhodopsin. Previous reports from other groups and our lab argue for either an active or passive mechanism for transducin and arrestin redistribution. Our lab has shown that arrestin migration occurs by diffusion which is restricted by molecular sinks (Nair et al, 2005b). The focus of my dissertation was to unravel the molecular mechanism of rod transducin translocation. Specifically, I found energy (ATP) was not required for transducin movement within photoreceptors. Also, I found that the disc membranes of the rod outer segments as well as protein-protein interactions with retinal guanylate cyclase serve to restrict transducin diffusion through the cell. In addition, I used the insights gained from these studies of transducin to re-examine the relationship of other G proteins' subcellular localization and signal transduction. Ultimately, I found that most G proteins do not undergo subunit dissociation under physiological activating conditions.
author Rosenzweig, Derek Hadar
author_facet Rosenzweig, Derek Hadar
author_sort Rosenzweig, Derek Hadar
title Light-Induced Relocalization of the Photoreceptor G Protein Transducin is Mediated by Binding Partner-Restricted Diffusion: New Insights into G Protein Subunit Dissociation
title_short Light-Induced Relocalization of the Photoreceptor G Protein Transducin is Mediated by Binding Partner-Restricted Diffusion: New Insights into G Protein Subunit Dissociation
title_full Light-Induced Relocalization of the Photoreceptor G Protein Transducin is Mediated by Binding Partner-Restricted Diffusion: New Insights into G Protein Subunit Dissociation
title_fullStr Light-Induced Relocalization of the Photoreceptor G Protein Transducin is Mediated by Binding Partner-Restricted Diffusion: New Insights into G Protein Subunit Dissociation
title_full_unstemmed Light-Induced Relocalization of the Photoreceptor G Protein Transducin is Mediated by Binding Partner-Restricted Diffusion: New Insights into G Protein Subunit Dissociation
title_sort light-induced relocalization of the photoreceptor g protein transducin is mediated by binding partner-restricted diffusion: new insights into g protein subunit dissociation
publisher Scholarly Repository
publishDate 2008
url http://scholarlyrepository.miami.edu/oa_dissertations/172
work_keys_str_mv AT rosenzweigderekhadar lightinducedrelocalizationofthephotoreceptorgproteintransducinismediatedbybindingpartnerrestricteddiffusionnewinsightsintogproteinsubunitdissociation
_version_ 1716389518449311744