Target Recognition and Competitive Synaptogenesis in the Drosophila Giant Fiber System

The development of complex neural networks relies on a careful balance of environmental cues to guide and shape both ends of the eventual connection. However, the correct wiring of circuits whose components share molecular profiles depends on a more elaborate phenomenon, competition. Despite being h...

Full description

Bibliographic Details
Main Author: Hill, Jason Joseph
Format: Others
Published: ScholarWorks@UMass Amherst 2012
Subjects:
Online Access:https://scholarworks.umass.edu/open_access_dissertations/556
https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1557&context=open_access_dissertations
id ndltd-UMASS-oai-scholarworks.umass.edu-open_access_dissertations-1557
record_format oai_dc
spelling ndltd-UMASS-oai-scholarworks.umass.edu-open_access_dissertations-15572020-12-02T14:39:49Z Target Recognition and Competitive Synaptogenesis in the Drosophila Giant Fiber System Hill, Jason Joseph The development of complex neural networks relies on a careful balance of environmental cues to guide and shape both ends of the eventual connection. However, the correct wiring of circuits whose components share molecular profiles depends on a more elaborate phenomenon, competition. Despite being highly studied, there is still a lack of understanding as to the mechanism that allows molecularly identical cells to form exclusive connections with their targets. To address this complex question, we turned to a simple circuit within the genetically tractable fly. Responsible for the escape reflex, the Giant Fiber System is comprised of bilaterally symmetrical axons that innervate the ipsilateral "jump" motorneuron, TTMn in a 1:1 ratio. However, if a TTMn is unilaterally ablated prior to circuit formation, this ratio is disrupted and the deprived axon forms its presynaptic terminal on the opposite side. Midline crossing by the deprived axon led to exploration of a known pathway in giant fiber development, midline repulsion via Slit and Roundabout. Axons in which Roundabout levels were reduced through a natural pathway antagonist, Commissurelesss, crossed the midline freely, confirming a native, if normally restricted ability to do so. However, unlike the overlapping giant fiber terminals seen following ablation, these axons retained their wild exclusivity, elaborating their terminals toward a single TTMn. This supported our initial aim of uncovering a competitive force in giant fiber target selection. In addition to repulsion, I also examined the attractive pathway of Netrin and Frazzled for a possible role in target identification. Varying the levels of Frazzled receptors led to increased midline crossing and overlapped terminals, suggesting a connection between this attractive receptor and the repulsion pathway first examined. Frazzled has been shown to induce commissureless expression independent of its ligand, making it an important linchpin in the regulation of giant fiber guidance and competition. In fact, when allowed to traverse the midline, giant fibers responded to a Netrin increase with overlapping synaptic terminals. In this dissertation, I present a model in which giant fibers possess competitive machinery, driven by Netrin and triggered by Frazzled, underneath the naturally restrictive midline repulsion. 2012-05-01T07:00:00Z text application/pdf https://scholarworks.umass.edu/open_access_dissertations/556 https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1557&context=open_access_dissertations Open Access Dissertations ScholarWorks@UMass Amherst competition Drosophila giant fiber guidance synaptogenesis Biology Cell Biology Cellular and Molecular Physiology
collection NDLTD
format Others
sources NDLTD
topic competition
Drosophila
giant fiber
guidance
synaptogenesis
Biology
Cell Biology
Cellular and Molecular Physiology
spellingShingle competition
Drosophila
giant fiber
guidance
synaptogenesis
Biology
Cell Biology
Cellular and Molecular Physiology
Hill, Jason Joseph
Target Recognition and Competitive Synaptogenesis in the Drosophila Giant Fiber System
description The development of complex neural networks relies on a careful balance of environmental cues to guide and shape both ends of the eventual connection. However, the correct wiring of circuits whose components share molecular profiles depends on a more elaborate phenomenon, competition. Despite being highly studied, there is still a lack of understanding as to the mechanism that allows molecularly identical cells to form exclusive connections with their targets. To address this complex question, we turned to a simple circuit within the genetically tractable fly. Responsible for the escape reflex, the Giant Fiber System is comprised of bilaterally symmetrical axons that innervate the ipsilateral "jump" motorneuron, TTMn in a 1:1 ratio. However, if a TTMn is unilaterally ablated prior to circuit formation, this ratio is disrupted and the deprived axon forms its presynaptic terminal on the opposite side. Midline crossing by the deprived axon led to exploration of a known pathway in giant fiber development, midline repulsion via Slit and Roundabout. Axons in which Roundabout levels were reduced through a natural pathway antagonist, Commissurelesss, crossed the midline freely, confirming a native, if normally restricted ability to do so. However, unlike the overlapping giant fiber terminals seen following ablation, these axons retained their wild exclusivity, elaborating their terminals toward a single TTMn. This supported our initial aim of uncovering a competitive force in giant fiber target selection. In addition to repulsion, I also examined the attractive pathway of Netrin and Frazzled for a possible role in target identification. Varying the levels of Frazzled receptors led to increased midline crossing and overlapped terminals, suggesting a connection between this attractive receptor and the repulsion pathway first examined. Frazzled has been shown to induce commissureless expression independent of its ligand, making it an important linchpin in the regulation of giant fiber guidance and competition. In fact, when allowed to traverse the midline, giant fibers responded to a Netrin increase with overlapping synaptic terminals. In this dissertation, I present a model in which giant fibers possess competitive machinery, driven by Netrin and triggered by Frazzled, underneath the naturally restrictive midline repulsion.
author Hill, Jason Joseph
author_facet Hill, Jason Joseph
author_sort Hill, Jason Joseph
title Target Recognition and Competitive Synaptogenesis in the Drosophila Giant Fiber System
title_short Target Recognition and Competitive Synaptogenesis in the Drosophila Giant Fiber System
title_full Target Recognition and Competitive Synaptogenesis in the Drosophila Giant Fiber System
title_fullStr Target Recognition and Competitive Synaptogenesis in the Drosophila Giant Fiber System
title_full_unstemmed Target Recognition and Competitive Synaptogenesis in the Drosophila Giant Fiber System
title_sort target recognition and competitive synaptogenesis in the drosophila giant fiber system
publisher ScholarWorks@UMass Amherst
publishDate 2012
url https://scholarworks.umass.edu/open_access_dissertations/556
https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1557&context=open_access_dissertations
work_keys_str_mv AT hilljasonjoseph targetrecognitionandcompetitivesynaptogenesisinthedrosophilagiantfibersystem
_version_ 1719365904112812032