On models of short pulse type in continuous media

The short-pulse equation (SPE) was first derived for ultra short pulse propagating in nonlinear optics. In this thesis, we consider short pulse propagation in nonlinear metamaterials characterized by a weak Kerr-type nonlinearity in their dielectric response. Assuming general Kramers-Kronig or Sellm...

Full description

Bibliographic Details
Main Author: Shen, Yannan
Language:ENG
Published: ScholarWorks@UMass Amherst 2012
Subjects:
Online Access:https://scholarworks.umass.edu/dissertations/AAI3545985
id ndltd-UMASS-oai-scholarworks.umass.edu-dissertations-6789
record_format oai_dc
spelling ndltd-UMASS-oai-scholarworks.umass.edu-dissertations-67892020-12-02T14:37:26Z On models of short pulse type in continuous media Shen, Yannan The short-pulse equation (SPE) was first derived for ultra short pulse propagating in nonlinear optics. In this thesis, we consider short pulse propagation in nonlinear metamaterials characterized by a weak Kerr-type nonlinearity in their dielectric response. Assuming general Kramers-Kronig or Sellmeier formulas for the permittivity and permeability, we derive two SPEs for the high- and low-frequency band gap respectively in one space dimension (1D). Then we generalize this model into two dimensional (2D) case, and give two 2D SPEs. For 1D SPE, we discuss the connection with the nonlinear Schrödinger equation (NLS), and the robustness of various solutions emanating from the sine-Gordon equation and their periodic generalizations, then we consider the wellposedness of generalized Ostrovsky equation with small initial data. For the 2D SPEs, we discuss the Hamiltonian structures, robustness of line breather solutions, and evolution of localized 2D initial data. Then we focus on an experiment on a left-handed nonlinear transmission line, which is a good way to study left-handed materials. We develop a discrete model that emulates the relevant circuit and benchmark its linear properties against the experimental dispersion relation. Using a perturbation method, we derive, from the discrete model, a NLS that predicts accurately the focusing (defocusing) carrier frequency threshold. We use numerical simulations to corroborate our experimental and theoretical findings and monitor the space-time evolution of the discrete solitons. Finally, we consider a setting of optical models outside of the regime of SPE type equations. We introduce a generalized model which accounts for phenomena of nonlinear diffraction within the one-dimensional NLS equation from the perspective of the self-consistent Lagrangian/Hamiltonian formulation. A detailed analysis of the fundamental solitary waves is reported. The Vakhitov-Kolokolov (VK) criterion is used to precisely predict the stability border for the solitons, along with the largest total power that the waves may possess. Past a critical point, collapse effects are observed, caused by suitable perturbations. Interactions between two identical parallel solitary beams are explored by dint of direct numerical simulations. It is found that in-phase solitons merge into robust or collapsing pulsons, depending on the strength of the nonlinear diffraction. 2012-01-01T08:00:00Z text https://scholarworks.umass.edu/dissertations/AAI3545985 Doctoral Dissertations Available from Proquest ENG ScholarWorks@UMass Amherst Mathematics
collection NDLTD
language ENG
sources NDLTD
topic Mathematics
spellingShingle Mathematics
Shen, Yannan
On models of short pulse type in continuous media
description The short-pulse equation (SPE) was first derived for ultra short pulse propagating in nonlinear optics. In this thesis, we consider short pulse propagation in nonlinear metamaterials characterized by a weak Kerr-type nonlinearity in their dielectric response. Assuming general Kramers-Kronig or Sellmeier formulas for the permittivity and permeability, we derive two SPEs for the high- and low-frequency band gap respectively in one space dimension (1D). Then we generalize this model into two dimensional (2D) case, and give two 2D SPEs. For 1D SPE, we discuss the connection with the nonlinear Schrödinger equation (NLS), and the robustness of various solutions emanating from the sine-Gordon equation and their periodic generalizations, then we consider the wellposedness of generalized Ostrovsky equation with small initial data. For the 2D SPEs, we discuss the Hamiltonian structures, robustness of line breather solutions, and evolution of localized 2D initial data. Then we focus on an experiment on a left-handed nonlinear transmission line, which is a good way to study left-handed materials. We develop a discrete model that emulates the relevant circuit and benchmark its linear properties against the experimental dispersion relation. Using a perturbation method, we derive, from the discrete model, a NLS that predicts accurately the focusing (defocusing) carrier frequency threshold. We use numerical simulations to corroborate our experimental and theoretical findings and monitor the space-time evolution of the discrete solitons. Finally, we consider a setting of optical models outside of the regime of SPE type equations. We introduce a generalized model which accounts for phenomena of nonlinear diffraction within the one-dimensional NLS equation from the perspective of the self-consistent Lagrangian/Hamiltonian formulation. A detailed analysis of the fundamental solitary waves is reported. The Vakhitov-Kolokolov (VK) criterion is used to precisely predict the stability border for the solitons, along with the largest total power that the waves may possess. Past a critical point, collapse effects are observed, caused by suitable perturbations. Interactions between two identical parallel solitary beams are explored by dint of direct numerical simulations. It is found that in-phase solitons merge into robust or collapsing pulsons, depending on the strength of the nonlinear diffraction.
author Shen, Yannan
author_facet Shen, Yannan
author_sort Shen, Yannan
title On models of short pulse type in continuous media
title_short On models of short pulse type in continuous media
title_full On models of short pulse type in continuous media
title_fullStr On models of short pulse type in continuous media
title_full_unstemmed On models of short pulse type in continuous media
title_sort on models of short pulse type in continuous media
publisher ScholarWorks@UMass Amherst
publishDate 2012
url https://scholarworks.umass.edu/dissertations/AAI3545985
work_keys_str_mv AT shenyannan onmodelsofshortpulsetypeincontinuousmedia
_version_ 1719365611132289024