Summary: | This dissertation addresses the crucial problem of how environmental policy uncertainty influences investments in energy technological change. The rising level of carbon emissions due to increasing global energy consumption calls for policy shift. In order to stem the negative consequences on the climate, policymakers are concerned with carving an optimal regulation that will encourage technology investments. However, decision makers are facing uncertainties surrounding future environmental policy. The first part considers the treatment of technological change in theoretical models. This part has two purposes: (1) to show–through illustrative examples–that technological change can lead to quite different, and surprising, impacts on the marginal costs of pollution abatement. We demonstrate an intriguing and uncommon result that technological change can increase the marginal costs of pollution abatement over some range of abatement; (2) to show the impact, on policy, of this uncommon observation. We find that under the assumption of technical change that can increase the marginal cost of pollution abatement over some range, the ranking of policy instruments is affected. The second part builds on the first by considering the impact of uncertainty in the carbon tax on investments in a portfolio of technologies. We determine the response of energy R&D investments as the carbon tax increases both in terms of overall and technology-specific investments. We determine the impact of risk in the carbon tax on the portfolio. We find that the response of the optimal investment in a portfolio of technologies to an increasing carbon tax depends on the relative costs of the programs and the elasticity of substitution between fossil and non-fossil energy inputs. In the third part, we zoom-in on the portfolio model above to consider how uncertainty in the magnitude and timing of a carbon tax influences investments. Under a two-stage continuous-time optimal control model, we consider the impact of these uncertainties on R&D spending that aims to lower the cost of non-fossil energy technology. We find that our results tally with the classical results because it discourages near-term investment. However, timing uncertainty increases near-term investment.
|