Retrieval of atmospheric attenuation using ground -based and airborne millimeter-wave cloud radar measurements

Cloud measurements at millimeter-wave frequencies are affected by attenuation due to atmospheric gases, clouds and precipitation. Estimation of the true equivalent radar reflectivity, Ze, is complicated because extinction mechanisms are not well characterized at these short wavelengths. This dissert...

Full description

Bibliographic Details
Main Author: Li, Lihua
Language:ENG
Published: ScholarWorks@UMass Amherst 2000
Subjects:
Online Access:https://scholarworks.umass.edu/dissertations/AAI9988816
id ndltd-UMASS-oai-scholarworks.umass.edu-dissertations-3429
record_format oai_dc
spelling ndltd-UMASS-oai-scholarworks.umass.edu-dissertations-34292020-12-02T14:35:15Z Retrieval of atmospheric attenuation using ground -based and airborne millimeter-wave cloud radar measurements Li, Lihua Cloud measurements at millimeter-wave frequencies are affected by attenuation due to atmospheric gases, clouds and precipitation. Estimation of the true equivalent radar reflectivity, Ze, is complicated because extinction mechanisms are not well characterized at these short wavelengths. This dissertation discusses cloud radar calibration and intercomparison of airborne and ground-based radar measurements, and describes two attenuation retrieval algorithms. The first one is the dual-radar method, which is based on dual 95 GHz radar measurements of the same cloud and precipitation volumes collected from opposing viewing angles. True radar reflectivity is retrieved by combining upward-looking and downward-looking radar profiles. This method reduces the uncertainty in radar reflectivity and attenuation estimates since it does not require a priori knowledge of the microphysical properties of hydrometeors. The second one is the modified Hitschfeld and Bordan (HB) algorithm, which uses single radar measurements with path integrated attenuation (PIA) as a constraint. Case studies are performed using data collected during the Summer 1998 NASA DC-8 Cloud Radar Experiment. Atmospheric attenuation and true radar reflectivity are retrieved by applying the dual-radar method. The results are then compared with those obtained using the modified HB algorithm. The analysis shows that the dual-radar method directly calculates the atmospheric attenuation and true radar reflectivity without knowledge of the relationship between clouds/precipitation attenuation rate (k) and true radar reflectivity ( Ze). It also provides a PIA reference to refine the HB algorithm. On the other hand, appropriate k - Z e relationships are essential to improve the performance of the modified HB algorithm. Ice cloud attenuation retrieved from the dual-radar method is related to the particle median volume diameter, which is estimated from MHz/95GHz dual wavelength measurements using theoretical models. Analysis of ice cloud measurements indicates that W-band attenuation is mostly caused by the loss due to scattering from large particles. Based on an IWC - Ze relationship, ice water content (IWC) is obtained. The analysis results show that appropriate attenuation correction significantly improves the accuracy of the IWC retrieval. 2000-01-01T08:00:00Z text https://scholarworks.umass.edu/dissertations/AAI9988816 Doctoral Dissertations Available from Proquest ENG ScholarWorks@UMass Amherst Electrical engineering
collection NDLTD
language ENG
sources NDLTD
topic Electrical engineering
spellingShingle Electrical engineering
Li, Lihua
Retrieval of atmospheric attenuation using ground -based and airborne millimeter-wave cloud radar measurements
description Cloud measurements at millimeter-wave frequencies are affected by attenuation due to atmospheric gases, clouds and precipitation. Estimation of the true equivalent radar reflectivity, Ze, is complicated because extinction mechanisms are not well characterized at these short wavelengths. This dissertation discusses cloud radar calibration and intercomparison of airborne and ground-based radar measurements, and describes two attenuation retrieval algorithms. The first one is the dual-radar method, which is based on dual 95 GHz radar measurements of the same cloud and precipitation volumes collected from opposing viewing angles. True radar reflectivity is retrieved by combining upward-looking and downward-looking radar profiles. This method reduces the uncertainty in radar reflectivity and attenuation estimates since it does not require a priori knowledge of the microphysical properties of hydrometeors. The second one is the modified Hitschfeld and Bordan (HB) algorithm, which uses single radar measurements with path integrated attenuation (PIA) as a constraint. Case studies are performed using data collected during the Summer 1998 NASA DC-8 Cloud Radar Experiment. Atmospheric attenuation and true radar reflectivity are retrieved by applying the dual-radar method. The results are then compared with those obtained using the modified HB algorithm. The analysis shows that the dual-radar method directly calculates the atmospheric attenuation and true radar reflectivity without knowledge of the relationship between clouds/precipitation attenuation rate (k) and true radar reflectivity ( Ze). It also provides a PIA reference to refine the HB algorithm. On the other hand, appropriate k - Z e relationships are essential to improve the performance of the modified HB algorithm. Ice cloud attenuation retrieved from the dual-radar method is related to the particle median volume diameter, which is estimated from MHz/95GHz dual wavelength measurements using theoretical models. Analysis of ice cloud measurements indicates that W-band attenuation is mostly caused by the loss due to scattering from large particles. Based on an IWC - Ze relationship, ice water content (IWC) is obtained. The analysis results show that appropriate attenuation correction significantly improves the accuracy of the IWC retrieval.
author Li, Lihua
author_facet Li, Lihua
author_sort Li, Lihua
title Retrieval of atmospheric attenuation using ground -based and airborne millimeter-wave cloud radar measurements
title_short Retrieval of atmospheric attenuation using ground -based and airborne millimeter-wave cloud radar measurements
title_full Retrieval of atmospheric attenuation using ground -based and airborne millimeter-wave cloud radar measurements
title_fullStr Retrieval of atmospheric attenuation using ground -based and airborne millimeter-wave cloud radar measurements
title_full_unstemmed Retrieval of atmospheric attenuation using ground -based and airborne millimeter-wave cloud radar measurements
title_sort retrieval of atmospheric attenuation using ground -based and airborne millimeter-wave cloud radar measurements
publisher ScholarWorks@UMass Amherst
publishDate 2000
url https://scholarworks.umass.edu/dissertations/AAI9988816
work_keys_str_mv AT lilihua retrievalofatmosphericattenuationusinggroundbasedandairbornemillimeterwavecloudradarmeasurements
_version_ 1719365230373371904