Characterization of acrylic-based latex blend coatings and thermodynamics of their deformation

A complete characterization of the mechanical, thermal and physical properties of acrylic-based latex blends films and a thermodynamic analysis of their deformation is presented in this study. These blends are composed of a glassy poly(methyl methacrylate-co-ethyl acrylate) $\rm(T\sb{g}=45\sp\circ$C...

Full description

Bibliographic Details
Main Author: Agarwal, Naveen
Language:ENG
Published: ScholarWorks@UMass Amherst 1998
Subjects:
Online Access:https://scholarworks.umass.edu/dissertations/AAI9909143
id ndltd-UMASS-oai-scholarworks.umass.edu-dissertations-3080
record_format oai_dc
spelling ndltd-UMASS-oai-scholarworks.umass.edu-dissertations-30802020-12-02T14:29:17Z Characterization of acrylic-based latex blend coatings and thermodynamics of their deformation Agarwal, Naveen A complete characterization of the mechanical, thermal and physical properties of acrylic-based latex blends films and a thermodynamic analysis of their deformation is presented in this study. These blends are composed of a glassy poly(methyl methacrylate-co-ethyl acrylate) $\rm(T\sb{g}=45\sp\circ$C), and a rubbery poly(methyl methacrylate-co-butyl acrylate) $\rm(T\sb{g}={-}5\sp\circ$C). Blend films are prepared, in different proportions of the two copolymers, by drying at temperatures high enough to ensure complete coalescence of the latex particles. Thermo-mechanical characterization provides evidence for the phase separation of the blend components by the existence of two distinct glass transitions. Effective blend moduli and Poisson's ratios exhibit sigmodial shaped profiles with composition, indicating the transformation of a continuous rubbery phase, with dispersions of the glassy phase, to a continuous glassy phase, with dispersions of a rubbery phase. Although not precisely measured, a range of 30-40% hard phase in the blend is identified as the interval of this transformation, bridged by a co-continuous morphology. A large amount of water is absorbed by these blends, which turns them white and opaque from their transparent dry state. The impact on mechanical properties is relatively minor as absorbed water is located in separate domains. Redrying at ${-}70\sp\circ$C preserves this whiteness, while redrying at elevated temperatures returns the blends to their original transparency. A qualitative model associates the absorbed water molecules with phase separated domains of residual surfactant within the dry films. Deformation calorimetry of these blends measures the work, heat and change in internal energy of isothermal deformation. An optimal combination of stiffness and extensibility maximizes the blend toughness by a synergistic distribution of energy between the two phases in their respective energy absorbing and energy dissipating mechanisms. The work of deformation increases at higher strain rates but the change in internal energy over fixed extensions remains constant. The additional work, consequently, is dissipated as heat by rate-dependent viscous effects. In summary, these blends provide an excellent model system to study the energy balance of deformation of two phase systems. The results highlight the need of a shift in focus when designing blends for optimum toughness and stiffness, by providing for a simultaneous maximization of energy dissipation and absorption. 1998-01-01T08:00:00Z text https://scholarworks.umass.edu/dissertations/AAI9909143 Doctoral Dissertations Available from Proquest ENG ScholarWorks@UMass Amherst Polymers|Materials science|Plastics
collection NDLTD
language ENG
sources NDLTD
topic Polymers|Materials science|Plastics
spellingShingle Polymers|Materials science|Plastics
Agarwal, Naveen
Characterization of acrylic-based latex blend coatings and thermodynamics of their deformation
description A complete characterization of the mechanical, thermal and physical properties of acrylic-based latex blends films and a thermodynamic analysis of their deformation is presented in this study. These blends are composed of a glassy poly(methyl methacrylate-co-ethyl acrylate) $\rm(T\sb{g}=45\sp\circ$C), and a rubbery poly(methyl methacrylate-co-butyl acrylate) $\rm(T\sb{g}={-}5\sp\circ$C). Blend films are prepared, in different proportions of the two copolymers, by drying at temperatures high enough to ensure complete coalescence of the latex particles. Thermo-mechanical characterization provides evidence for the phase separation of the blend components by the existence of two distinct glass transitions. Effective blend moduli and Poisson's ratios exhibit sigmodial shaped profiles with composition, indicating the transformation of a continuous rubbery phase, with dispersions of the glassy phase, to a continuous glassy phase, with dispersions of a rubbery phase. Although not precisely measured, a range of 30-40% hard phase in the blend is identified as the interval of this transformation, bridged by a co-continuous morphology. A large amount of water is absorbed by these blends, which turns them white and opaque from their transparent dry state. The impact on mechanical properties is relatively minor as absorbed water is located in separate domains. Redrying at ${-}70\sp\circ$C preserves this whiteness, while redrying at elevated temperatures returns the blends to their original transparency. A qualitative model associates the absorbed water molecules with phase separated domains of residual surfactant within the dry films. Deformation calorimetry of these blends measures the work, heat and change in internal energy of isothermal deformation. An optimal combination of stiffness and extensibility maximizes the blend toughness by a synergistic distribution of energy between the two phases in their respective energy absorbing and energy dissipating mechanisms. The work of deformation increases at higher strain rates but the change in internal energy over fixed extensions remains constant. The additional work, consequently, is dissipated as heat by rate-dependent viscous effects. In summary, these blends provide an excellent model system to study the energy balance of deformation of two phase systems. The results highlight the need of a shift in focus when designing blends for optimum toughness and stiffness, by providing for a simultaneous maximization of energy dissipation and absorption.
author Agarwal, Naveen
author_facet Agarwal, Naveen
author_sort Agarwal, Naveen
title Characterization of acrylic-based latex blend coatings and thermodynamics of their deformation
title_short Characterization of acrylic-based latex blend coatings and thermodynamics of their deformation
title_full Characterization of acrylic-based latex blend coatings and thermodynamics of their deformation
title_fullStr Characterization of acrylic-based latex blend coatings and thermodynamics of their deformation
title_full_unstemmed Characterization of acrylic-based latex blend coatings and thermodynamics of their deformation
title_sort characterization of acrylic-based latex blend coatings and thermodynamics of their deformation
publisher ScholarWorks@UMass Amherst
publishDate 1998
url https://scholarworks.umass.edu/dissertations/AAI9909143
work_keys_str_mv AT agarwalnaveen characterizationofacrylicbasedlatexblendcoatingsandthermodynamicsoftheirdeformation
_version_ 1719363761497702400