Advanced noncoherent receivers for mobile fading channels

The purpose of this thesis, is to derive and evaluate the performance of noncoherent, maximum likelihood receivers with improved performance, for trellis coded PSK and QAM type signals, transmitted over Rician, correlated, fast, frequency non-selective and frequency selective fading channels, wit...

Full description

Bibliographic Details
Main Author: Bouras, Dimitrios P.
Format: Others
Language:English
Published: 2009
Online Access:http://hdl.handle.net/2429/7193
id ndltd-UBC-oai-circle.library.ubc.ca-2429-7193
record_format oai_dc
spelling ndltd-UBC-oai-circle.library.ubc.ca-2429-71932018-01-05T17:33:34Z Advanced noncoherent receivers for mobile fading channels Bouras, Dimitrios P. The purpose of this thesis, is to derive and evaluate the performance of noncoherent, maximum likelihood receivers with improved performance, for trellis coded PSK and QAM type signals, transmitted over Rician, correlated, fast, frequency non-selective and frequency selective fading channels, with and without diversity. First we derive the optimal, in the maximum likelihood detection sense, receiver structure for frequency non-selective Rician fading channels, employing diversity reception. In order to reduce the complexity of the optimal receiver, we propose and evaluate the performance of suboptimal receiver structures, which show significant performance improvements as compared to conventional techniques. Investigation of the effects on performance of the proposed algorithms, due to imperfect statistical knowledge of the fading channel typical for a real life environment, demonstrates very small sensitivity even to large errors in estimates of channel parameters. Complementing our work in frequency non-selective fading, we derive the optimal, in the maximum likelihood detection sense, receiver, for the correlated, fast, frequency selective Rician fading channel. In the interest of system simplicity, we propose and evaluate reduced complexity versions of the decoding algorithms. The impact of simplifying assumptions in the theoretical derivation, as well as the receiver sensitivity to non ideal channel knowledge, is investigated. The results show significant performance improvements over the fastest known channel equalization technique, accompanied by small sensitivity to imperfections. Last, we derive analytical performance bounds for simplified versions of the optimal diversity receiver, for frequency non-selective, Rician fading channels. The tightness and accuracy of the bounds is verified, through the excellent agreement between computer simulation results, and bound calculation. Performance evaluation demonstrates significant improvements, approaching the effectiveness of coherent detection in AWGN, even with a relatively small diversity order, for Rician, as well as shadowed EHF fading channels. Applied Science, Faculty of Electrical and Computer Engineering, Department of Graduate 2009-04-15T23:49:08Z 2009-04-15T23:49:08Z 1995 1995-11 Text Thesis/Dissertation http://hdl.handle.net/2429/7193 eng For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. 4052997 bytes application/pdf
collection NDLTD
language English
format Others
sources NDLTD
description The purpose of this thesis, is to derive and evaluate the performance of noncoherent, maximum likelihood receivers with improved performance, for trellis coded PSK and QAM type signals, transmitted over Rician, correlated, fast, frequency non-selective and frequency selective fading channels, with and without diversity. First we derive the optimal, in the maximum likelihood detection sense, receiver structure for frequency non-selective Rician fading channels, employing diversity reception. In order to reduce the complexity of the optimal receiver, we propose and evaluate the performance of suboptimal receiver structures, which show significant performance improvements as compared to conventional techniques. Investigation of the effects on performance of the proposed algorithms, due to imperfect statistical knowledge of the fading channel typical for a real life environment, demonstrates very small sensitivity even to large errors in estimates of channel parameters. Complementing our work in frequency non-selective fading, we derive the optimal, in the maximum likelihood detection sense, receiver, for the correlated, fast, frequency selective Rician fading channel. In the interest of system simplicity, we propose and evaluate reduced complexity versions of the decoding algorithms. The impact of simplifying assumptions in the theoretical derivation, as well as the receiver sensitivity to non ideal channel knowledge, is investigated. The results show significant performance improvements over the fastest known channel equalization technique, accompanied by small sensitivity to imperfections. Last, we derive analytical performance bounds for simplified versions of the optimal diversity receiver, for frequency non-selective, Rician fading channels. The tightness and accuracy of the bounds is verified, through the excellent agreement between computer simulation results, and bound calculation. Performance evaluation demonstrates significant improvements, approaching the effectiveness of coherent detection in AWGN, even with a relatively small diversity order, for Rician, as well as shadowed EHF fading channels. === Applied Science, Faculty of === Electrical and Computer Engineering, Department of === Graduate
author Bouras, Dimitrios P.
spellingShingle Bouras, Dimitrios P.
Advanced noncoherent receivers for mobile fading channels
author_facet Bouras, Dimitrios P.
author_sort Bouras, Dimitrios P.
title Advanced noncoherent receivers for mobile fading channels
title_short Advanced noncoherent receivers for mobile fading channels
title_full Advanced noncoherent receivers for mobile fading channels
title_fullStr Advanced noncoherent receivers for mobile fading channels
title_full_unstemmed Advanced noncoherent receivers for mobile fading channels
title_sort advanced noncoherent receivers for mobile fading channels
publishDate 2009
url http://hdl.handle.net/2429/7193
work_keys_str_mv AT bourasdimitriosp advancednoncoherentreceiversformobilefadingchannels
_version_ 1718587629726859264