Antibacterial capability characterization of polymer-nanoparticle composites using high-throughput microfluidic platform

Nanoparticles have been significantly employed in the number, variety, and function to create advanced materials with antibacterial capability. Despite considerable recent progress in the development of advanced material technology, the quest to fabricate optimized antibacterial materials remains a...

Full description

Bibliographic Details
Main Author: Kheiri, Sina
Language:English
Published: University of British Columbia 2018
Online Access:http://hdl.handle.net/2429/64223
id ndltd-UBC-oai-circle.library.ubc.ca-2429-64223
record_format oai_dc
spelling ndltd-UBC-oai-circle.library.ubc.ca-2429-642232018-01-05T17:30:15Z Antibacterial capability characterization of polymer-nanoparticle composites using high-throughput microfluidic platform Kheiri, Sina Nanoparticles have been significantly employed in the number, variety, and function to create advanced materials with antibacterial capability. Despite considerable recent progress in the development of advanced material technology, the quest to fabricate optimized antibacterial materials remains a high research priority in biomedical and food packaging industries. This thesis presents a study to characterize and optimized antibacterial capability of liquid silicone rubber (LSR) and nanoparticle (NP) composites. Over the past decades, inorganic NPs, particularly metal oxide NPs, have attracted a great attention because of their capability of strong inhibitory and bactericidal effects. Three representative NPs (e.g., ZnO, TiO₂, and Ag) with different concentrations capable of achieving antibacterial status were tested. To optimize various parameters such as types of materials, concentrations, and processing condition, a high-throughput platforms using microsystems technology are desirable, which enables researchers to minimize the usage of materials and conduct multiple experiments at a time. The antibacterial efficiency of the fabricated LSR/NP nanocomposites were evaluated through the high-throughput microfluidic platforms and viable counts technique. LSR/TiO2 nanocomposites demonstrated the best antibacterial nanocomposite. Also, the viability of E. coli, which were exposed to LSR/NPs on the microfluidic platform, was assessed and studied using the live/dead assay method. It was also found from the both methods that the antibacterial capability of the nanocomposites was decreased after 15 wt%. Applied Science, Faculty of Engineering, School of (Okanagan) Graduate 2018-01-03T17:26:07Z 2018-01-03T17:26:07Z 2017 2018-02 Text Thesis/Dissertation http://hdl.handle.net/2429/64223 eng Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ University of British Columbia
collection NDLTD
language English
sources NDLTD
description Nanoparticles have been significantly employed in the number, variety, and function to create advanced materials with antibacterial capability. Despite considerable recent progress in the development of advanced material technology, the quest to fabricate optimized antibacterial materials remains a high research priority in biomedical and food packaging industries. This thesis presents a study to characterize and optimized antibacterial capability of liquid silicone rubber (LSR) and nanoparticle (NP) composites. Over the past decades, inorganic NPs, particularly metal oxide NPs, have attracted a great attention because of their capability of strong inhibitory and bactericidal effects. Three representative NPs (e.g., ZnO, TiO₂, and Ag) with different concentrations capable of achieving antibacterial status were tested. To optimize various parameters such as types of materials, concentrations, and processing condition, a high-throughput platforms using microsystems technology are desirable, which enables researchers to minimize the usage of materials and conduct multiple experiments at a time. The antibacterial efficiency of the fabricated LSR/NP nanocomposites were evaluated through the high-throughput microfluidic platforms and viable counts technique. LSR/TiO2 nanocomposites demonstrated the best antibacterial nanocomposite. Also, the viability of E. coli, which were exposed to LSR/NPs on the microfluidic platform, was assessed and studied using the live/dead assay method. It was also found from the both methods that the antibacterial capability of the nanocomposites was decreased after 15 wt%. === Applied Science, Faculty of === Engineering, School of (Okanagan) === Graduate
author Kheiri, Sina
spellingShingle Kheiri, Sina
Antibacterial capability characterization of polymer-nanoparticle composites using high-throughput microfluidic platform
author_facet Kheiri, Sina
author_sort Kheiri, Sina
title Antibacterial capability characterization of polymer-nanoparticle composites using high-throughput microfluidic platform
title_short Antibacterial capability characterization of polymer-nanoparticle composites using high-throughput microfluidic platform
title_full Antibacterial capability characterization of polymer-nanoparticle composites using high-throughput microfluidic platform
title_fullStr Antibacterial capability characterization of polymer-nanoparticle composites using high-throughput microfluidic platform
title_full_unstemmed Antibacterial capability characterization of polymer-nanoparticle composites using high-throughput microfluidic platform
title_sort antibacterial capability characterization of polymer-nanoparticle composites using high-throughput microfluidic platform
publisher University of British Columbia
publishDate 2018
url http://hdl.handle.net/2429/64223
work_keys_str_mv AT kheirisina antibacterialcapabilitycharacterizationofpolymernanoparticlecompositesusinghighthroughputmicrofluidicplatform
_version_ 1718586069751955456