Characterization of two udp glycosyltransferase genes from hybrid poplar

Glycosyltransferases (GTs) play important roles in plant growth and development. The biological functions of many GTs are unknown. In the present study, two putative GT genes (PopGT1 and PopGT2) were cloned and their biological roles in growth and development of Arabidopsis and hybrid-poplar were in...

Full description

Bibliographic Details
Main Author: Kenawy, Ahmed
Language:English
Published: University of British Columbia 2017
Online Access:http://hdl.handle.net/2429/60192
id ndltd-UBC-oai-circle.library.ubc.ca-2429-60192
record_format oai_dc
spelling ndltd-UBC-oai-circle.library.ubc.ca-2429-601922018-01-05T17:29:29Z Characterization of two udp glycosyltransferase genes from hybrid poplar Kenawy, Ahmed Glycosyltransferases (GTs) play important roles in plant growth and development. The biological functions of many GTs are unknown. In the present study, two putative GT genes (PopGT1 and PopGT2) were cloned and their biological roles in growth and development of Arabidopsis and hybrid-poplar were investigated. In silico, in vitro, and in vivo methods were used to characterize the two encoded proteins. Phylogenetic analysis, enzyme activity assays, and transcript abundance were studied. In addition, plant growth and development, leaf morphology, stem anatomy, cell wall composition, biomechanical properties, soluble carbohydrate, and phenolic metabolite contents were determined. The results indicated that PopGT1 showed high similarity to tobacco salicylic acid glycosyltransferase, and both PopGT1 and PopGT2 (annotated as AtUGT74F2) were clustered within phylogenetic group L of family-1 GTs (UGTs). In vitro characterization of the two recombinant proteins indicated that PopGT1 glycosylated several flavonoids, showed only trace activities towards cinnamic and indole butyric acid, and accepted UDP-glucose as a sugar donor. The optimum temperature and pH for in vitro PopGT1 activity was 35 ºC and pH 7.5, respectively. PopGT2 showed no enzymatic activity towards any substrates. The two coding sequences (PopGT1 and PopGT2) were cloned in the pSM3 expression vector and over-expressed in Arabidopsis plants to investigate their in vivo functions. Phenotypically, plant height, stem diameter, rosette diameter, and stem number increased significantly in the transgenic plants. In addition, rosette morphology and root gravitropism were altered. Transgenic plants flowered earlier than the control plants. Chemically, cell wall compositions and phenolic metabolite contents changed significantly. In parallel, transgenic trees showed changes in leaf morphology, stem diameter, phloem fibre arrangement, and early bud break. Wood density was reduced revealing a brittle-stem phenotype. Marginal increases in lignin and reductions in cellulose content were apparent. Salireposide content was reduced in the bark of transgenic trees. The results indicated that altering the expression of both genes in Arabidopsis and poplar affected plant growth and development, cell wall composition, phenolic metabolite profiles, and wood biomechanical properties. PopGT1 showed in vivo substrate specificity towards kaempferol and promiscuous in vitro enzyme activity. However, the substrate of PopGT2 remains unclear. Forestry, Faculty of Graduate 2017-01-04T23:03:08Z 2017-01-21T04:04:07 2016 2017-02 Text Thesis/Dissertation http://hdl.handle.net/2429/60192 eng Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ University of British Columbia
collection NDLTD
language English
sources NDLTD
description Glycosyltransferases (GTs) play important roles in plant growth and development. The biological functions of many GTs are unknown. In the present study, two putative GT genes (PopGT1 and PopGT2) were cloned and their biological roles in growth and development of Arabidopsis and hybrid-poplar were investigated. In silico, in vitro, and in vivo methods were used to characterize the two encoded proteins. Phylogenetic analysis, enzyme activity assays, and transcript abundance were studied. In addition, plant growth and development, leaf morphology, stem anatomy, cell wall composition, biomechanical properties, soluble carbohydrate, and phenolic metabolite contents were determined. The results indicated that PopGT1 showed high similarity to tobacco salicylic acid glycosyltransferase, and both PopGT1 and PopGT2 (annotated as AtUGT74F2) were clustered within phylogenetic group L of family-1 GTs (UGTs). In vitro characterization of the two recombinant proteins indicated that PopGT1 glycosylated several flavonoids, showed only trace activities towards cinnamic and indole butyric acid, and accepted UDP-glucose as a sugar donor. The optimum temperature and pH for in vitro PopGT1 activity was 35 ºC and pH 7.5, respectively. PopGT2 showed no enzymatic activity towards any substrates. The two coding sequences (PopGT1 and PopGT2) were cloned in the pSM3 expression vector and over-expressed in Arabidopsis plants to investigate their in vivo functions. Phenotypically, plant height, stem diameter, rosette diameter, and stem number increased significantly in the transgenic plants. In addition, rosette morphology and root gravitropism were altered. Transgenic plants flowered earlier than the control plants. Chemically, cell wall compositions and phenolic metabolite contents changed significantly. In parallel, transgenic trees showed changes in leaf morphology, stem diameter, phloem fibre arrangement, and early bud break. Wood density was reduced revealing a brittle-stem phenotype. Marginal increases in lignin and reductions in cellulose content were apparent. Salireposide content was reduced in the bark of transgenic trees. The results indicated that altering the expression of both genes in Arabidopsis and poplar affected plant growth and development, cell wall composition, phenolic metabolite profiles, and wood biomechanical properties. PopGT1 showed in vivo substrate specificity towards kaempferol and promiscuous in vitro enzyme activity. However, the substrate of PopGT2 remains unclear. === Forestry, Faculty of === Graduate
author Kenawy, Ahmed
spellingShingle Kenawy, Ahmed
Characterization of two udp glycosyltransferase genes from hybrid poplar
author_facet Kenawy, Ahmed
author_sort Kenawy, Ahmed
title Characterization of two udp glycosyltransferase genes from hybrid poplar
title_short Characterization of two udp glycosyltransferase genes from hybrid poplar
title_full Characterization of two udp glycosyltransferase genes from hybrid poplar
title_fullStr Characterization of two udp glycosyltransferase genes from hybrid poplar
title_full_unstemmed Characterization of two udp glycosyltransferase genes from hybrid poplar
title_sort characterization of two udp glycosyltransferase genes from hybrid poplar
publisher University of British Columbia
publishDate 2017
url http://hdl.handle.net/2429/60192
work_keys_str_mv AT kenawyahmed characterizationoftwoudpglycosyltransferasegenesfromhybridpoplar
_version_ 1718585499231191040