Investigating impact exposure and functional neurological status in collegiate football players

A single head impact in sport can cause an acute concussion, whereas repetitive head impacts are suspected to cause chronic neurological impairment. However, the diagnostic accuracy of concussion assessment tools are not well understood and sparse research evidence exists regarding the neurological...

Full description

Bibliographic Details
Main Author: Rebchuk, Alexander David
Language:English
Published: University of British Columbia 2016
Online Access:http://hdl.handle.net/2429/58375
id ndltd-UBC-oai-circle.library.ubc.ca-2429-58375
record_format oai_dc
spelling ndltd-UBC-oai-circle.library.ubc.ca-2429-583752018-01-05T17:29:03Z Investigating impact exposure and functional neurological status in collegiate football players Rebchuk, Alexander David A single head impact in sport can cause an acute concussion, whereas repetitive head impacts are suspected to cause chronic neurological impairment. However, the diagnostic accuracy of concussion assessment tools are not well understood and sparse research evidence exists regarding the neurological implications of repetitive head impacts. The objective of this thesis was to investigate repetitive head impacts, including impact detection technology and neurocognitive function, over the duration of a collegiate football season. Thirty-five healthy participants were recruited from a collegiate football program for a three-part study. Participants adhered an impact detection sensor (xPatch, X2 Biosystems) to their right mastoid process prior to each game and practice. As well, they completed a weekly battery of neurological testing that included the graded symptom checklist, standardized assessment of concussion, balance error scoring system and King-Devick test. In experiment 1, we investigated the accuracy of the xPatch to classify each detected event as an impact or non-impact. We matched each event to game video and assigned a true positive, false positive, true negative or false negative classification. The sensitivity of the sensor was 77.6%, specificity was 70.4% and overall accuracy was 75.1%. Additionally, we determined that impact count is strongly correlated to cumulative head kinematic load, i.e. cumulative linear acceleration (r²=0.98), cumulative rotational acceleration (r²=0.98) and cumulative rotational velocity (r²=0.99). In experiment 2, we explored the relationship between alterations in neurological status and repetitive head impact exposure using linear mixed models. The number of head impacts sustained was significantly related to the number and severity of symptoms in participants, but not to any other indicator of neurological status. In experiment 3, we investigated the diagnostic accuracy of each neurological test using receiver operating characteristic curves and corresponding area under the curve values. The diagnostic accuracy for the graded symptom checklist was high (0.76-0.93), King-Devick Test was moderate (0.64-0.80), standardized assessment of concussion and balance error scoring system were poor (0.47-0.71). In summary, this thesis identified limitations in current impact detection technology, provided evidence of a link between repetitive head impacts and symptomatology, and determined that the graded symptom checklist can accurately diagnose concussion. Education, Faculty of Kinesiology, School of Graduate 2016-07-04T15:34:15Z 2016-07-04T11:26:11 2016 2016-09 Text Thesis/Dissertation http://hdl.handle.net/2429/58375 eng Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ University of British Columbia
collection NDLTD
language English
sources NDLTD
description A single head impact in sport can cause an acute concussion, whereas repetitive head impacts are suspected to cause chronic neurological impairment. However, the diagnostic accuracy of concussion assessment tools are not well understood and sparse research evidence exists regarding the neurological implications of repetitive head impacts. The objective of this thesis was to investigate repetitive head impacts, including impact detection technology and neurocognitive function, over the duration of a collegiate football season. Thirty-five healthy participants were recruited from a collegiate football program for a three-part study. Participants adhered an impact detection sensor (xPatch, X2 Biosystems) to their right mastoid process prior to each game and practice. As well, they completed a weekly battery of neurological testing that included the graded symptom checklist, standardized assessment of concussion, balance error scoring system and King-Devick test. In experiment 1, we investigated the accuracy of the xPatch to classify each detected event as an impact or non-impact. We matched each event to game video and assigned a true positive, false positive, true negative or false negative classification. The sensitivity of the sensor was 77.6%, specificity was 70.4% and overall accuracy was 75.1%. Additionally, we determined that impact count is strongly correlated to cumulative head kinematic load, i.e. cumulative linear acceleration (r²=0.98), cumulative rotational acceleration (r²=0.98) and cumulative rotational velocity (r²=0.99). In experiment 2, we explored the relationship between alterations in neurological status and repetitive head impact exposure using linear mixed models. The number of head impacts sustained was significantly related to the number and severity of symptoms in participants, but not to any other indicator of neurological status. In experiment 3, we investigated the diagnostic accuracy of each neurological test using receiver operating characteristic curves and corresponding area under the curve values. The diagnostic accuracy for the graded symptom checklist was high (0.76-0.93), King-Devick Test was moderate (0.64-0.80), standardized assessment of concussion and balance error scoring system were poor (0.47-0.71). In summary, this thesis identified limitations in current impact detection technology, provided evidence of a link between repetitive head impacts and symptomatology, and determined that the graded symptom checklist can accurately diagnose concussion. === Education, Faculty of === Kinesiology, School of === Graduate
author Rebchuk, Alexander David
spellingShingle Rebchuk, Alexander David
Investigating impact exposure and functional neurological status in collegiate football players
author_facet Rebchuk, Alexander David
author_sort Rebchuk, Alexander David
title Investigating impact exposure and functional neurological status in collegiate football players
title_short Investigating impact exposure and functional neurological status in collegiate football players
title_full Investigating impact exposure and functional neurological status in collegiate football players
title_fullStr Investigating impact exposure and functional neurological status in collegiate football players
title_full_unstemmed Investigating impact exposure and functional neurological status in collegiate football players
title_sort investigating impact exposure and functional neurological status in collegiate football players
publisher University of British Columbia
publishDate 2016
url http://hdl.handle.net/2429/58375
work_keys_str_mv AT rebchukalexanderdavid investigatingimpactexposureandfunctionalneurologicalstatusincollegiatefootballplayers
_version_ 1718585267199148032