Summary: | Wave-mechanical phenomena such as resonance and interference, in both light and matter, are central to the principles of quantum coherent control over molecular processes. Focusing on the dynamical aspects, this dissertation is a compilation of studies on the interaction physics involving wave packets in molecules, the driving light field, and the underlying coherence and control. In each work, we will demonstrate interesting correlations between the properties of a carefully designed excitation light field and desirable outcomes of the molecules quantum dynamics. We will analyze the dynamical effect of a Feshbach resonance in the adiabatic Raman photoassociation for ultracold diatomic molecule formation from ultracold atoms. A narrow resonance is shown to be able to increase the effective number of collisions, in an ultracold atomic gas, that are available for photoassociation. This results in an optimal resonance width much smaller than the atomic collision energy bandwidth, due to the balance between the effective collision rate and single-collision transfer probability. Next, we demonstrate the linear molecular response to high-intensity, broadband, shaped optical fields. We show that this originates from interferences based on intra-pulse Raman excitations, and thus response linearity is not unique to the first-order perturbative limit and can not be used to infer the strength of the field. In the last study, we simulate the stochastic vibrational wave packet and dissociation-flux dynamics in a molecule excited by light with temporal and spectral incoherent properties. Between this case and that using a coherent pulse with the same spectral profile, we compare the vibrational wave functions and the loss of electronic and vibrational coherence, and demonstrate the qualitative difference between coherently and incoherently driven dynamics in molecules. === Science, Faculty of === Physics and Astronomy, Department of === Graduate
|