Regulation of macrophage function related to atherosclerosis development

Atherosclerosis has been identified as a chronic inflammatory disease resulting from interactions between immune cells and their microenvironment in the walls of susceptible arteries. Macrophages, critical players in innate immunity, participate in major events throughout all stages of atheroscleros...

Full description

Bibliographic Details
Main Author: Zhang, Peng
Language:English
Published: University of British Columbia 2015
Online Access:http://hdl.handle.net/2429/53971
id ndltd-UBC-oai-circle.library.ubc.ca-2429-53971
record_format oai_dc
spelling ndltd-UBC-oai-circle.library.ubc.ca-2429-539712018-01-05T17:28:17Z Regulation of macrophage function related to atherosclerosis development Zhang, Peng Atherosclerosis has been identified as a chronic inflammatory disease resulting from interactions between immune cells and their microenvironment in the walls of susceptible arteries. Macrophages, critical players in innate immunity, participate in major events throughout all stages of atherosclerosis progression. Work in this dissertation is specifically interested in regulation of macrophage functions in the context of atherosclerosis. First, using bone marrow transplantation, we investigated how loss of eukaryotic elongation factor 2 kinase (eEF2K) activity affected atherosclerosis progression. Compared to mice transplanted with wild-type bone marrow, mice transplanted with bone marrow from eEF2K deficient mice had reduced atherosclerosis development after being fed with high-fat diet for 16 weeks. Impaired tumor necrosis factor-α release and subsequent adhesion molecule expression in the eEF2K inactive group may account for the reduction of atherosclerotic plaques. This finding suggested that the eEF2K inhibitor may be clinically useful to treat atherosclerosis. Second, we examined how oxLDL was involved in macrophage plasticity. We found that oxLDL polarized macrophages towards a novel subtype named MoL, which was characterized by high expression levels of heme oxygenase-1 and macrophage inhibitory cytokine-1. MoL cells are polarized, in part, through the activation of the PI3K/Akt pathway. MoL cells specifically up-regulates vascular cell adhesion molecule-1. This finding provided a more comprehensive view of macrophage plasticity in the context of atherosclerosis. Finally, we investigated signal transduction of ceramide 1-phosphate induced vascular endothelial growth factor release in macrophages. Using pharmaceutical inhibitors, we ruled out contributions of p38 MAPK and PKC-ζ signalling, and showed that the PI3K/Akt and MEK/ERK pathways were responsible for this process. Although we have no solid evidence to conclude on the mechanisms by which signals transduced from the outside of the cell to the inside, a rational hypothesis that this transduction requires ceramide 1-phosphate to be either embedded into, or actively transported through, the plasma membrane has been proposed. In summary, work in this dissertation contributes to our understanding of how macrophages functions are regulated by interacting with factors in the microenvironment. Results from this dissertation provide potential new avenues for discovery of novel therapeutic approaches to treat atherosclerosis. Medicine, Faculty of Medicine, Department of Experimental Medicine, Division of Graduate 2015-06-26T16:32:01Z 2015-12-31T00:00:00Z 2015 2015-09 Text Thesis/Dissertation http://hdl.handle.net/2429/53971 eng Attribution-NonCommercial-NoDerivs 2.5 Canada http://creativecommons.org/licenses/by-nc-nd/2.5/ca/ University of British Columbia
collection NDLTD
language English
sources NDLTD
description Atherosclerosis has been identified as a chronic inflammatory disease resulting from interactions between immune cells and their microenvironment in the walls of susceptible arteries. Macrophages, critical players in innate immunity, participate in major events throughout all stages of atherosclerosis progression. Work in this dissertation is specifically interested in regulation of macrophage functions in the context of atherosclerosis. First, using bone marrow transplantation, we investigated how loss of eukaryotic elongation factor 2 kinase (eEF2K) activity affected atherosclerosis progression. Compared to mice transplanted with wild-type bone marrow, mice transplanted with bone marrow from eEF2K deficient mice had reduced atherosclerosis development after being fed with high-fat diet for 16 weeks. Impaired tumor necrosis factor-α release and subsequent adhesion molecule expression in the eEF2K inactive group may account for the reduction of atherosclerotic plaques. This finding suggested that the eEF2K inhibitor may be clinically useful to treat atherosclerosis. Second, we examined how oxLDL was involved in macrophage plasticity. We found that oxLDL polarized macrophages towards a novel subtype named MoL, which was characterized by high expression levels of heme oxygenase-1 and macrophage inhibitory cytokine-1. MoL cells are polarized, in part, through the activation of the PI3K/Akt pathway. MoL cells specifically up-regulates vascular cell adhesion molecule-1. This finding provided a more comprehensive view of macrophage plasticity in the context of atherosclerosis. Finally, we investigated signal transduction of ceramide 1-phosphate induced vascular endothelial growth factor release in macrophages. Using pharmaceutical inhibitors, we ruled out contributions of p38 MAPK and PKC-ζ signalling, and showed that the PI3K/Akt and MEK/ERK pathways were responsible for this process. Although we have no solid evidence to conclude on the mechanisms by which signals transduced from the outside of the cell to the inside, a rational hypothesis that this transduction requires ceramide 1-phosphate to be either embedded into, or actively transported through, the plasma membrane has been proposed. In summary, work in this dissertation contributes to our understanding of how macrophages functions are regulated by interacting with factors in the microenvironment. Results from this dissertation provide potential new avenues for discovery of novel therapeutic approaches to treat atherosclerosis. === Medicine, Faculty of === Medicine, Department of === Experimental Medicine, Division of === Graduate
author Zhang, Peng
spellingShingle Zhang, Peng
Regulation of macrophage function related to atherosclerosis development
author_facet Zhang, Peng
author_sort Zhang, Peng
title Regulation of macrophage function related to atherosclerosis development
title_short Regulation of macrophage function related to atherosclerosis development
title_full Regulation of macrophage function related to atherosclerosis development
title_fullStr Regulation of macrophage function related to atherosclerosis development
title_full_unstemmed Regulation of macrophage function related to atherosclerosis development
title_sort regulation of macrophage function related to atherosclerosis development
publisher University of British Columbia
publishDate 2015
url http://hdl.handle.net/2429/53971
work_keys_str_mv AT zhangpeng regulationofmacrophagefunctionrelatedtoatherosclerosisdevelopment
_version_ 1718584787064586240