Summary: | Understanding affiliative behavior is critical to understanding social organisms. While affiliative behaviors are known to exist across taxa and a wide range of contexts, the bulk of what is known about the physiological regulation of affiliation comes from studies of mammals. The zebra finch (Taeniopygia guttata) is a good model to further our understanding of the neuroendocrine regulation of affiliative behaviors. Zebra finches form sexually monogamous pair bonds, which they actively maintain throughout the year. Thus, in this system we can examine the regulatory mechanisms of affiliation associated with long-term pair maintenance both within and outside of a breeding context. In this dissertation, I present a series of studies using the zebra finch to examine the hypothesis that sex steroids regulate pair-maintenance behavior differently depending on breeding condition. In brief, I report that, (a) zebra finches have distinct sex steroid profiles based on breeding condition, (b) levels of testosterone and estradiol levels are maintained in behaviorally-relevant regions of water-restricted (i.e. non-breeding) zebra finches, (c) aromatase inhibition rapidly increases pair-maintenance behavior (proximity time), (d) chronic male-testosterone treatment decreases pair-maintenance behavior (proximity time under stressed conditions), and (e) sex steroid profiles and pair-maintenance behavior are not correlated in wild-caught zebra finches. Taken together, this work suggests that sex steroids have breeding-specific and social-context-specific regulatory effects on pair-maintenance behavior. Finally, this research shows the importance of controlling for breeding condition in all behavioral neuroendocrinology research on zebra finches and it highlights the role of seasonality in the expression and regulation of affiliative behaviors. === Science, Faculty of === Zoology, Department of === Graduate
|