Microsensor technology to evaluate patient adherence with removable oral appliances

Objective: The aim of this study was to evaluate the accuracy of three thermosensitive microsensors, which record “wear-time” of removable oral appliances (OA) used for orthodontics and obstructive sleep apnea therapy. Methods: In vitro testing was undertaken for TheraMon (Sensor T, n=20), AIR-AID...

Full description

Bibliographic Details
Main Author: Kirshenblatt, Stacey Jenna
Language:English
Published: University of British Columbia 2014
Online Access:http://hdl.handle.net/2429/46921
id ndltd-UBC-oai-circle.library.ubc.ca-2429-46921
record_format oai_dc
spelling ndltd-UBC-oai-circle.library.ubc.ca-2429-469212018-01-05T17:27:26Z Microsensor technology to evaluate patient adherence with removable oral appliances Kirshenblatt, Stacey Jenna Objective: The aim of this study was to evaluate the accuracy of three thermosensitive microsensors, which record “wear-time” of removable oral appliances (OA) used for orthodontics and obstructive sleep apnea therapy. Methods: In vitro testing was undertaken for TheraMon (Sensor T, n=20), AIR-AID SLEEP (Sensor A, n=30) and DentiTrac (Sensor D, n=16) microsensors, which were placed in a water bath to simulate “wear-time” of OA. Logs of when the microsensors were placed in the water bath were compared to the time readouts from the microsensors. Trial 1 examined the accuracy of long durations of “wear” (7 hours/day). Trial 2 examined short durations of “wear” (2 hour intervals). Trial 3 tested the impact of different embedding materials on accuracy: acrylic, polyvinylchloride and thermoactive acrylic. In vivo testing included 14 volunteers who wore maxillary retainers embedded with Sensor A and D for 30 nights. Subjects’ logs of appliance usage were compared to the computed readouts from the sensors. Results: In the in vitro phase, the median absolute deviation of the computed “wear-time” minus the logged time was 0.00 minutes for Sensor A and Sensor T in all trials. For Sensor D, the median deviation was 5.00 minutes in trial 1 and 3 and 10.00 minutes in trial 2. Sensor A was significantly more accurate than Sensor T and Sensor D in trial 1 (p<0.001). In trial 2, Sensor A and Sensor T were equal in accuracy but were significantly better than Sensor D (p<0.001). In trial 3, there was no effect of the material on the recording accuracies of Sensor A (p=0.13) and Sensor D (p=0.41); Polyvinylchloride was found to be significantly less accurate for Sensor T (p<0.05). In the in vivo phase, the median absolute deviation of Sensor A was 3.00 minutes and Sensor D was 5.00 minutes; there was no significant difference between Sensor A and Sensor D (p=0.45). Conclusion: Sensor D tended to have the largest deviation in recording accuracy in in vitro testing using the water bath. All three microsensors have acceptable clinical accuracy and can be used to record “wear-time” of removable OA fabricated from different materials. Dentistry, Faculty of Graduate 2014-06-03T15:07:45Z 2014-06-03T15:07:45Z 2014 2014-09 Text Thesis/Dissertation http://hdl.handle.net/2429/46921 eng Attribution-NonCommercial-NoDerivs 2.5 Canada http://creativecommons.org/licenses/by-nc-nd/2.5/ca/ University of British Columbia
collection NDLTD
language English
sources NDLTD
description Objective: The aim of this study was to evaluate the accuracy of three thermosensitive microsensors, which record “wear-time” of removable oral appliances (OA) used for orthodontics and obstructive sleep apnea therapy. Methods: In vitro testing was undertaken for TheraMon (Sensor T, n=20), AIR-AID SLEEP (Sensor A, n=30) and DentiTrac (Sensor D, n=16) microsensors, which were placed in a water bath to simulate “wear-time” of OA. Logs of when the microsensors were placed in the water bath were compared to the time readouts from the microsensors. Trial 1 examined the accuracy of long durations of “wear” (7 hours/day). Trial 2 examined short durations of “wear” (2 hour intervals). Trial 3 tested the impact of different embedding materials on accuracy: acrylic, polyvinylchloride and thermoactive acrylic. In vivo testing included 14 volunteers who wore maxillary retainers embedded with Sensor A and D for 30 nights. Subjects’ logs of appliance usage were compared to the computed readouts from the sensors. Results: In the in vitro phase, the median absolute deviation of the computed “wear-time” minus the logged time was 0.00 minutes for Sensor A and Sensor T in all trials. For Sensor D, the median deviation was 5.00 minutes in trial 1 and 3 and 10.00 minutes in trial 2. Sensor A was significantly more accurate than Sensor T and Sensor D in trial 1 (p<0.001). In trial 2, Sensor A and Sensor T were equal in accuracy but were significantly better than Sensor D (p<0.001). In trial 3, there was no effect of the material on the recording accuracies of Sensor A (p=0.13) and Sensor D (p=0.41); Polyvinylchloride was found to be significantly less accurate for Sensor T (p<0.05). In the in vivo phase, the median absolute deviation of Sensor A was 3.00 minutes and Sensor D was 5.00 minutes; there was no significant difference between Sensor A and Sensor D (p=0.45). Conclusion: Sensor D tended to have the largest deviation in recording accuracy in in vitro testing using the water bath. All three microsensors have acceptable clinical accuracy and can be used to record “wear-time” of removable OA fabricated from different materials. === Dentistry, Faculty of === Graduate
author Kirshenblatt, Stacey Jenna
spellingShingle Kirshenblatt, Stacey Jenna
Microsensor technology to evaluate patient adherence with removable oral appliances
author_facet Kirshenblatt, Stacey Jenna
author_sort Kirshenblatt, Stacey Jenna
title Microsensor technology to evaluate patient adherence with removable oral appliances
title_short Microsensor technology to evaluate patient adherence with removable oral appliances
title_full Microsensor technology to evaluate patient adherence with removable oral appliances
title_fullStr Microsensor technology to evaluate patient adherence with removable oral appliances
title_full_unstemmed Microsensor technology to evaluate patient adherence with removable oral appliances
title_sort microsensor technology to evaluate patient adherence with removable oral appliances
publisher University of British Columbia
publishDate 2014
url http://hdl.handle.net/2429/46921
work_keys_str_mv AT kirshenblattstaceyjenna microsensortechnologytoevaluatepatientadherencewithremovableoralappliances
_version_ 1718584288060899328