Eocene volcanic response to the tectonic evolution of the Canadian Cordillera
The Ootsa Lake Group (OLG) represents a voluminous episode of Eocene volcanism across the Interior plateau of British Columbia (BC), in the Canadian Cordillera. Remarkable aspects of the rocks (lithology, texture, volume, extent, and geochemistry) suggest that even though they formed along an active...
Main Author: | |
---|---|
Language: | English |
Published: |
University of British Columbia
2014
|
Online Access: | http://hdl.handle.net/2429/46271 |
id |
ndltd-UBC-oai-circle.library.ubc.ca-2429-46271 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UBC-oai-circle.library.ubc.ca-2429-462712018-01-05T17:27:15Z Eocene volcanic response to the tectonic evolution of the Canadian Cordillera Bordet, Esther-Jeanne The Ootsa Lake Group (OLG) represents a voluminous episode of Eocene volcanism across the Interior plateau of British Columbia (BC), in the Canadian Cordillera. Remarkable aspects of the rocks (lithology, texture, volume, extent, and geochemistry) suggest that even though they formed along an active continental margin, the tectonic setting was different from a classic arc. The OLG was defined by field mapping, U-Pb and ⁴⁰Ar/³⁹Ar geochronology, major and trace elements geochemistry, and three-dimensional modelling of the thickness and structure. A new tectonic model for the evolution of the Canadian Cordillera in the Paleogene is proposed using this comprehensive dataset. The OLG stratigraphy comprises a thick sequence of rhyolite and dacite lava, locally capped by andesite. Onset, duration and termination of volcanism are equivalent across the Interior plateau, and are constrained between 54.7 and 46.6 Ma by new U-Pb and ⁴⁰Ar/³⁹Ar geochronology. OLG lavas yield a “volcanic arc” signature (diagnostic high-K calc-alkaline trend, and trace and rare earth elements patterns), suggesting supra-subduction zone contributions from a hydrated mantle wedge. However, a similar signature may be inherited from partial melting of crustal reservoirs composed of older accreted volcanic arc crust. This is supported by Sr isotope data indicating variable crustal contributions to melts across BC. OLG intermediate rocks were likely derived from mantle melting, but dominantly silicic compositions support partial melting of the crust as a dominant magma producing mechanism. Eocene volcanic rocks cover at least 65,000 km² of BC, but their original extent may have been almost continuous from southwestern Yukon to Idaho. Coeval volcanism and extensional deformation contributed to the accumulation and preservation of volcanic products in extensional basins, up to 4000 m thick in some locations. With such dimensions, the OLG may have attained the status of a Silicic Large Igneous Province prior to erosion. The cause of OLG volcanism and coeval extension is attributed to the sudden ingress of hot sublithospheric mantle within a previously metasomatized mantle region, following cessation of subduction and a slab break. The resulting thermal anomaly progressed across a “slab gap” beneath BC, leading to mantle and lower crustal melting, crustal anatexis and magmatism. Science, Faculty of Earth, Ocean and Atmospheric Sciences, Department of Graduate 2014-03-25T17:40:53Z 2014-03-25T17:40:53Z 2014 2014-05 Text Thesis/Dissertation http://hdl.handle.net/2429/46271 eng Attribution-NonCommercial-NoDerivs 2.5 Canada http://creativecommons.org/licenses/by-nc-nd/2.5/ca/ University of British Columbia |
collection |
NDLTD |
language |
English |
sources |
NDLTD |
description |
The Ootsa Lake Group (OLG) represents a voluminous episode of Eocene volcanism across the Interior plateau of British Columbia (BC), in the Canadian Cordillera. Remarkable aspects of the rocks (lithology, texture, volume, extent, and geochemistry) suggest that even though they formed along an active continental margin, the tectonic setting was different from a classic arc. The OLG was defined by field mapping, U-Pb and ⁴⁰Ar/³⁹Ar geochronology, major and trace elements geochemistry, and three-dimensional modelling of the thickness and structure. A new tectonic model for the evolution of the Canadian Cordillera in the Paleogene is proposed using this comprehensive dataset.
The OLG stratigraphy comprises a thick sequence of rhyolite and dacite lava, locally capped by andesite. Onset, duration and termination of volcanism are equivalent across the Interior plateau, and are constrained between 54.7 and 46.6 Ma by new U-Pb and ⁴⁰Ar/³⁹Ar geochronology.
OLG lavas yield a “volcanic arc” signature (diagnostic high-K calc-alkaline trend, and trace and rare earth elements patterns), suggesting supra-subduction zone contributions from a hydrated mantle wedge. However, a similar signature may be inherited from partial melting of crustal reservoirs composed of older accreted volcanic arc crust. This is supported by Sr isotope data indicating variable crustal contributions to melts across BC. OLG intermediate rocks were likely derived from mantle melting, but dominantly silicic compositions support partial melting of the crust as a dominant magma producing mechanism.
Eocene volcanic rocks cover at least 65,000 km² of BC, but their original extent may have been almost continuous from southwestern Yukon to Idaho. Coeval volcanism and extensional deformation contributed to the accumulation and preservation of volcanic products in extensional basins, up to 4000 m thick in some locations. With such dimensions, the OLG may have attained the status of a Silicic Large Igneous Province prior to erosion.
The cause of OLG volcanism and coeval extension is attributed to the sudden ingress of hot sublithospheric mantle within a previously metasomatized mantle region, following cessation of subduction and a slab break. The resulting thermal anomaly progressed across a “slab gap” beneath BC, leading to mantle and lower crustal melting, crustal anatexis and magmatism. === Science, Faculty of === Earth, Ocean and Atmospheric Sciences, Department of === Graduate |
author |
Bordet, Esther-Jeanne |
spellingShingle |
Bordet, Esther-Jeanne Eocene volcanic response to the tectonic evolution of the Canadian Cordillera |
author_facet |
Bordet, Esther-Jeanne |
author_sort |
Bordet, Esther-Jeanne |
title |
Eocene volcanic response to the tectonic evolution of the Canadian Cordillera |
title_short |
Eocene volcanic response to the tectonic evolution of the Canadian Cordillera |
title_full |
Eocene volcanic response to the tectonic evolution of the Canadian Cordillera |
title_fullStr |
Eocene volcanic response to the tectonic evolution of the Canadian Cordillera |
title_full_unstemmed |
Eocene volcanic response to the tectonic evolution of the Canadian Cordillera |
title_sort |
eocene volcanic response to the tectonic evolution of the canadian cordillera |
publisher |
University of British Columbia |
publishDate |
2014 |
url |
http://hdl.handle.net/2429/46271 |
work_keys_str_mv |
AT bordetestherjeanne eocenevolcanicresponsetothetectonicevolutionofthecanadiancordillera |
_version_ |
1718584180523139072 |