Developing quality assurance procedures for gated volumetric modulated arc therapy in stereotactic ablative radiation therapy

The purpose of this project is to develop a quality assurance (QA) procedure for gated volumetric modulated radiation therapy (VMAT) in stereotactic ablative radiation therapy (SABR) for liver cancer treatments and investigate the gating parameters for acceptable plan delivery in terms of the dose t...

Full description

Bibliographic Details
Main Author: Viel, Francis
Language:English
Published: University of British Columbia 2014
Online Access:http://hdl.handle.net/2429/46227
id ndltd-UBC-oai-circle.library.ubc.ca-2429-46227
record_format oai_dc
spelling ndltd-UBC-oai-circle.library.ubc.ca-2429-462272018-01-05T17:27:11Z Developing quality assurance procedures for gated volumetric modulated arc therapy in stereotactic ablative radiation therapy Viel, Francis The purpose of this project is to develop a quality assurance (QA) procedure for gated volumetric modulated radiation therapy (VMAT) in stereotactic ablative radiation therapy (SABR) for liver cancer treatments and investigate the gating parameters for acceptable plan delivery in terms of the dose to a moving volume and treatment delivery time. 10 patient plans for VMAT SABR liver were created using the Eclipse™ treatment planning system (TPS). The plans were then transferred to a CT-scanned (computed tomography) Quasar™ phantom (i.e. a water-equivalent, geometrically simplified representation of a patient) and delivered on a TrueBeam™ linear accelerator using a 10FFF (flattening filter free) beam and Varian’s real-time position management (RPM) system for respiratory gating. Two kinds of breathing patterns were used: free breathing (FB) and an interrupted (~5 s pause) end of exhale coached breathing (CB) pattern. Ion chamber and Gafchromic™ film measurements were acquired for a gated delivery while the phantom moved under the described breathing patterns and a non-gated, stationary phantom delivery. The gate window was set to obtain a range of residual target motion from 2-5 mm. All gated deliveries have been shown to be dosimetrically equivalent to the static deliveries with differences in point dose measurements under 1% and average gamma (2%, 2 mm) agreement above 98.7%. Comparison with the treatment planning system resulted also in good agreement, with differences in point dose measurements under 2.5% and average gamma (3%, 3 mm) agreement of 92%. The use of a CB pattern increases significantly the duty cycle compared with free breathing and allows for shorter treatment times. Gated VMAT treatments have been delivered successfully to a motorized phantom. FB patterns contain considerable variability and it is difficult to achieve acceptable results even with very small gate windows. However, a CB pattern combined with a sufficiently small gate resulted in acceptable dose distributions that can be delivered in a reasonable amount of time. Science, Faculty of Physics and Astronomy, Department of Graduate 2014-03-13T15:49:37Z 2014-03-13T15:49:37Z 2014 2014-05 Text Thesis/Dissertation http://hdl.handle.net/2429/46227 eng Attribution-NonCommercial-NoDerivs 2.5 Canada http://creativecommons.org/licenses/by-nc-nd/2.5/ca/ University of British Columbia
collection NDLTD
language English
sources NDLTD
description The purpose of this project is to develop a quality assurance (QA) procedure for gated volumetric modulated radiation therapy (VMAT) in stereotactic ablative radiation therapy (SABR) for liver cancer treatments and investigate the gating parameters for acceptable plan delivery in terms of the dose to a moving volume and treatment delivery time. 10 patient plans for VMAT SABR liver were created using the Eclipse™ treatment planning system (TPS). The plans were then transferred to a CT-scanned (computed tomography) Quasar™ phantom (i.e. a water-equivalent, geometrically simplified representation of a patient) and delivered on a TrueBeam™ linear accelerator using a 10FFF (flattening filter free) beam and Varian’s real-time position management (RPM) system for respiratory gating. Two kinds of breathing patterns were used: free breathing (FB) and an interrupted (~5 s pause) end of exhale coached breathing (CB) pattern. Ion chamber and Gafchromic™ film measurements were acquired for a gated delivery while the phantom moved under the described breathing patterns and a non-gated, stationary phantom delivery. The gate window was set to obtain a range of residual target motion from 2-5 mm. All gated deliveries have been shown to be dosimetrically equivalent to the static deliveries with differences in point dose measurements under 1% and average gamma (2%, 2 mm) agreement above 98.7%. Comparison with the treatment planning system resulted also in good agreement, with differences in point dose measurements under 2.5% and average gamma (3%, 3 mm) agreement of 92%. The use of a CB pattern increases significantly the duty cycle compared with free breathing and allows for shorter treatment times. Gated VMAT treatments have been delivered successfully to a motorized phantom. FB patterns contain considerable variability and it is difficult to achieve acceptable results even with very small gate windows. However, a CB pattern combined with a sufficiently small gate resulted in acceptable dose distributions that can be delivered in a reasonable amount of time. === Science, Faculty of === Physics and Astronomy, Department of === Graduate
author Viel, Francis
spellingShingle Viel, Francis
Developing quality assurance procedures for gated volumetric modulated arc therapy in stereotactic ablative radiation therapy
author_facet Viel, Francis
author_sort Viel, Francis
title Developing quality assurance procedures for gated volumetric modulated arc therapy in stereotactic ablative radiation therapy
title_short Developing quality assurance procedures for gated volumetric modulated arc therapy in stereotactic ablative radiation therapy
title_full Developing quality assurance procedures for gated volumetric modulated arc therapy in stereotactic ablative radiation therapy
title_fullStr Developing quality assurance procedures for gated volumetric modulated arc therapy in stereotactic ablative radiation therapy
title_full_unstemmed Developing quality assurance procedures for gated volumetric modulated arc therapy in stereotactic ablative radiation therapy
title_sort developing quality assurance procedures for gated volumetric modulated arc therapy in stereotactic ablative radiation therapy
publisher University of British Columbia
publishDate 2014
url http://hdl.handle.net/2429/46227
work_keys_str_mv AT vielfrancis developingqualityassuranceproceduresforgatedvolumetricmodulatedarctherapyinstereotacticablativeradiationtherapy
_version_ 1718584171353341952