Summary: | Photovoltaic (PV) generator generates clean energy but also brings active power fluctuation to the network. The thesis investigates the frequency stability issue of a MW level stand-alone hybrid micro grid which contains PV generator, diesel generator, storage unit and loads. The PV generator can only generate as much power as the sun provides. The resulting power mismatch between PV generation and load demand needs to be compensated. The slow responding diesel generator is designed to compensate for the steady state power mismatch. The battery, as the fast responding storage unit, is set to reject the power transients.
A battery control method based on the micro grid frequency feedback and PV output feed-forward is presented to satisfy the requirement of active power compensation in transients. It will be shown that the method keeps the stand - alone micro grid frequency within a specified region and provides the diesel generators more margin of time to adjust their output for better diesel efficiency. === Applied Science, Faculty of === Electrical and Computer Engineering, Department of === Graduate
|