Activity of Cs (K)-promoted Cu-MgO in the formation of oxygenates from CH₃OH/CO and CO/H₂
The selective synthesis of C₂ oxygenates, especially ethanol, from C₁ species such as CH₃OH and synthesis gas (CO/H₂) is of interest as the demand for clean fuels, including biofuels, increases. However, over alkali-promoted Cu-ZnO catalysts the synthesis of C₂ oxygenates occurs with very low select...
Main Author: | |
---|---|
Language: | English |
Published: |
University of British Columbia
2012
|
Online Access: | http://hdl.handle.net/2429/43266 |
id |
ndltd-UBC-oai-circle.library.ubc.ca-2429-43266 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UBC-oai-circle.library.ubc.ca-2429-432662018-01-05T17:26:06Z Activity of Cs (K)-promoted Cu-MgO in the formation of oxygenates from CH₃OH/CO and CO/H₂ Goodarznia, Shahin The selective synthesis of C₂ oxygenates, especially ethanol, from C₁ species such as CH₃OH and synthesis gas (CO/H₂) is of interest as the demand for clean fuels, including biofuels, increases. However, over alkali-promoted Cu-ZnO catalysts the synthesis of C₂ oxygenates occurs with very low selectivity. Previous mechanistic studies suggest that the basic properties and the Cu properties of these catalysts are critical in determining the C₂ oxygenate selectivity. However, the possible synergistic effect of these catalyst properties on the selectivity of C₂ oxygenates is poorly understood. In the present study, Cu-MgO catalysts were investigated since MgO possesses noticeably higher basic properties compared to ZnO. Furthermore to address the knowledge gap in the literature with respect to a synergistic effect between catalyst basic properties and Cu properties on the synthesis of C₂ oxygenates from CH₃OH/CO, MgO, Cu-MgO and Cs (K)-promoted-Cu-MgO catalysts were prepared, characterized and tested at 101kPa and 498-523K. The catalysts had intrinsic basicities of 3.9 – 17.0 μmol CO₂.m⁻², SACu° of < 3 m².g⁻¹ and SACu₂₊ of < 2 m².g⁻¹. The results showed that methyl formate was the dominant C₂ oxygenate, while selectivity to ethanol and acetic acid was low (< 5 C-atom%). At SA_Cu° (< 2 m².g⁻¹), there was an optimum basicity (9.5 µmol CO₂.m⁻²) at which the selectivity to C₂ species and methyl formate reached a maximum. Also, at approximately constant specific basicity (384.5 – 415.9 µmol CO₂.g⁻¹), an increase in SA_Cu°, led to an increase in methyl formate yield, whereas no correlation between SA_Cu₂₊ and methyl formate yield was observed. The 0.5wt%Cs-40wt%Cu-MgO catalyst showed the highest selectivity towards C₂ oxygenates at 101 kPa and was used for high pressure studies to investigate oxygenates synthesis from CO/H₂ at typical industrial conditions (6000-9000kPa and 558-598K). CH₃OH was the dominant produced oxygenate (>66 C-atom%). The reaction kinetics of CH₃OH was studied. The Cs-Cu-MgO catalyst was noticeably less active for the synthesis of oxygenates, compared to a conventional Cs-Cu-ZnO catalyst, which was caused by lower Cu dispersion and weaker Cu-metal oxide interaction in the Cs-Cu-MgO compared to Cs-Cu-ZnO, as well as poor electronic-conductivity and lack of hydrogenation-activity of MgO compared to ZnO. Applied Science, Faculty of Chemical and Biological Engineering, Department of Graduate 2012-09-25T17:38:54Z 2012-09-25T17:38:54Z 2012 2012-11 Text Thesis/Dissertation http://hdl.handle.net/2429/43266 eng Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ University of British Columbia |
collection |
NDLTD |
language |
English |
sources |
NDLTD |
description |
The selective synthesis of C₂ oxygenates, especially ethanol, from C₁ species such as CH₃OH and synthesis gas (CO/H₂) is of interest as the demand for clean fuels, including biofuels, increases. However, over alkali-promoted Cu-ZnO catalysts the synthesis of C₂ oxygenates occurs with very low selectivity. Previous mechanistic studies suggest that the basic properties and the Cu properties of these catalysts are critical in determining the C₂ oxygenate selectivity. However, the possible synergistic effect of these catalyst properties on the selectivity of C₂ oxygenates is poorly understood. In the present study, Cu-MgO catalysts were investigated since MgO possesses noticeably higher basic properties compared to ZnO. Furthermore to address the knowledge gap in the literature with respect to a synergistic effect between catalyst basic properties and Cu properties on the synthesis of C₂ oxygenates from CH₃OH/CO, MgO, Cu-MgO and Cs (K)-promoted-Cu-MgO catalysts were prepared, characterized and tested at 101kPa and 498-523K. The catalysts had intrinsic basicities of 3.9 – 17.0 μmol CO₂.m⁻², SACu° of < 3 m².g⁻¹ and SACu₂₊ of < 2 m².g⁻¹. The results showed that methyl formate was the dominant C₂ oxygenate, while selectivity to ethanol and acetic acid was low (< 5 C-atom%). At SA_Cu° (< 2 m².g⁻¹), there was an optimum basicity (9.5 µmol CO₂.m⁻²) at which the selectivity to C₂ species and methyl formate reached a maximum. Also, at approximately constant specific basicity (384.5 – 415.9 µmol CO₂.g⁻¹), an increase in SA_Cu°, led to an increase in methyl formate yield, whereas no correlation between SA_Cu₂₊ and methyl formate yield was observed. The 0.5wt%Cs-40wt%Cu-MgO catalyst showed the highest selectivity towards C₂ oxygenates at 101 kPa and was used for high pressure studies to investigate oxygenates synthesis from CO/H₂ at typical industrial conditions (6000-9000kPa and 558-598K). CH₃OH was the dominant produced oxygenate (>66 C-atom%). The reaction kinetics of CH₃OH was studied. The Cs-Cu-MgO catalyst was noticeably less active for the synthesis of oxygenates, compared to a conventional Cs-Cu-ZnO catalyst, which was caused by lower Cu dispersion and weaker Cu-metal oxide interaction in the Cs-Cu-MgO compared to Cs-Cu-ZnO, as well as poor electronic-conductivity and lack of hydrogenation-activity of MgO compared to ZnO. === Applied Science, Faculty of === Chemical and Biological Engineering, Department of === Graduate |
author |
Goodarznia, Shahin |
spellingShingle |
Goodarznia, Shahin Activity of Cs (K)-promoted Cu-MgO in the formation of oxygenates from CH₃OH/CO and CO/H₂ |
author_facet |
Goodarznia, Shahin |
author_sort |
Goodarznia, Shahin |
title |
Activity of Cs (K)-promoted Cu-MgO in the formation of oxygenates from CH₃OH/CO and CO/H₂ |
title_short |
Activity of Cs (K)-promoted Cu-MgO in the formation of oxygenates from CH₃OH/CO and CO/H₂ |
title_full |
Activity of Cs (K)-promoted Cu-MgO in the formation of oxygenates from CH₃OH/CO and CO/H₂ |
title_fullStr |
Activity of Cs (K)-promoted Cu-MgO in the formation of oxygenates from CH₃OH/CO and CO/H₂ |
title_full_unstemmed |
Activity of Cs (K)-promoted Cu-MgO in the formation of oxygenates from CH₃OH/CO and CO/H₂ |
title_sort |
activity of cs (k)-promoted cu-mgo in the formation of oxygenates from ch₃oh/co and co/h₂ |
publisher |
University of British Columbia |
publishDate |
2012 |
url |
http://hdl.handle.net/2429/43266 |
work_keys_str_mv |
AT goodarzniashahin activityofcskpromotedcumgointheformationofoxygenatesfromch3ohcoandcoh2 |
_version_ |
1718583514842005504 |