Host protein manipulation as a mechanism in viral cardiomyopathy

Viral myocarditis, the inflammation of myocardium initiated by viral infection, is an important cause of mortality in neonates and children. In addition, it is a precursor to dilated cardiomyopathy (DCM). To date, no effective therapy is available for viral myocarditis/DCM. Coxsackievirus B3 (CVB3)...

Full description

Bibliographic Details
Main Author: Wong, Tse Yuan
Language:English
Published: University of British Columbia 2012
Online Access:http://hdl.handle.net/2429/43095
id ndltd-UBC-oai-circle.library.ubc.ca-2429-43095
record_format oai_dc
spelling ndltd-UBC-oai-circle.library.ubc.ca-2429-430952018-01-05T17:26:02Z Host protein manipulation as a mechanism in viral cardiomyopathy Wong, Tse Yuan Viral myocarditis, the inflammation of myocardium initiated by viral infection, is an important cause of mortality in neonates and children. In addition, it is a precursor to dilated cardiomyopathy (DCM). To date, no effective therapy is available for viral myocarditis/DCM. Coxsackievirus B3 (CVB3) is an important human pathogen of viral myocarditis. Extensive research efforts on CVB3 have broadened our understanding of the virus-host protein interactions. However, the pathogenesis of coxsackievirus-induced myocarditis is not fully understood. The objective of this dissertation is to explore the role of host protein manipulation in coxsackieviral replication and pathogenicity. My hypotheses are that (1) coxsackievirus hijacks host’s cellular autophagy mechanism to facilitate its own replication; and (2) the serum response factor (SRF) is cleaved by viral protease 2A during coxsackievirus infection and contributes to impaired myocardial function and progression to DCM. For project 1, I demonstrated that CVB3 manipulates the host autophagy pathway to supplement viral replication. Autophagy is an evolutionary conserved homeostatic mechanism in eukaryotes that degrades and recycles long-lived cytoplasmic proteins, as well as damaged organelles. The hallmark of autophagy is the formation of double-membrane vesicles known as autophagosomes. I provided the initial evidence that CVB3 infection induces the formation of autophagosomes. Up-regulation of autophagosome formation enhances CVB3 replication, whereas downregulation of autophagy pathway reduces CVB3 replication. My results help clarify the nature of the intracellular membranes previously shown to be required for viral replication. For project 2, I demonstrated that CVB3 manipulates SRF expression via protein cleavage. SRF is a transcription factor vital for the expression of cardiac contractile/regulator genes, as well as gene silencing microRNAs. Cardiac-specific knockout of SRF in adult transgenic mice results in disruption of cardiac gene expression and development of severe DCM. I showed that SRF is cleaved in CVB3-infected mouse hearts and cardiomyocytes. Further studies revealed that SRF is cleaved at the 327 amino acids position by CVB3-encoded protease 2A. I demonstrated that SRF cleavage contributes to DCM by abolishing the transactivation property of SRF and generating dominant-negative SRF-truncates. Taken together, these novel viral strategies bridged existing knowledge and may serve as therapeutic targets for viral myocarditis/DCM. Medicine, Faculty of Pathology and Laboratory Medicine, Department of Graduate 2012-08-30T16:11:46Z 2012-08-30T16:11:46Z 2012 2012-11 Text Thesis/Dissertation http://hdl.handle.net/2429/43095 eng Attribution-ShareAlike 3.0 Unported http://creativecommons.org/licenses/by-sa/3.0/ University of British Columbia
collection NDLTD
language English
sources NDLTD
description Viral myocarditis, the inflammation of myocardium initiated by viral infection, is an important cause of mortality in neonates and children. In addition, it is a precursor to dilated cardiomyopathy (DCM). To date, no effective therapy is available for viral myocarditis/DCM. Coxsackievirus B3 (CVB3) is an important human pathogen of viral myocarditis. Extensive research efforts on CVB3 have broadened our understanding of the virus-host protein interactions. However, the pathogenesis of coxsackievirus-induced myocarditis is not fully understood. The objective of this dissertation is to explore the role of host protein manipulation in coxsackieviral replication and pathogenicity. My hypotheses are that (1) coxsackievirus hijacks host’s cellular autophagy mechanism to facilitate its own replication; and (2) the serum response factor (SRF) is cleaved by viral protease 2A during coxsackievirus infection and contributes to impaired myocardial function and progression to DCM. For project 1, I demonstrated that CVB3 manipulates the host autophagy pathway to supplement viral replication. Autophagy is an evolutionary conserved homeostatic mechanism in eukaryotes that degrades and recycles long-lived cytoplasmic proteins, as well as damaged organelles. The hallmark of autophagy is the formation of double-membrane vesicles known as autophagosomes. I provided the initial evidence that CVB3 infection induces the formation of autophagosomes. Up-regulation of autophagosome formation enhances CVB3 replication, whereas downregulation of autophagy pathway reduces CVB3 replication. My results help clarify the nature of the intracellular membranes previously shown to be required for viral replication. For project 2, I demonstrated that CVB3 manipulates SRF expression via protein cleavage. SRF is a transcription factor vital for the expression of cardiac contractile/regulator genes, as well as gene silencing microRNAs. Cardiac-specific knockout of SRF in adult transgenic mice results in disruption of cardiac gene expression and development of severe DCM. I showed that SRF is cleaved in CVB3-infected mouse hearts and cardiomyocytes. Further studies revealed that SRF is cleaved at the 327 amino acids position by CVB3-encoded protease 2A. I demonstrated that SRF cleavage contributes to DCM by abolishing the transactivation property of SRF and generating dominant-negative SRF-truncates. Taken together, these novel viral strategies bridged existing knowledge and may serve as therapeutic targets for viral myocarditis/DCM. === Medicine, Faculty of === Pathology and Laboratory Medicine, Department of === Graduate
author Wong, Tse Yuan
spellingShingle Wong, Tse Yuan
Host protein manipulation as a mechanism in viral cardiomyopathy
author_facet Wong, Tse Yuan
author_sort Wong, Tse Yuan
title Host protein manipulation as a mechanism in viral cardiomyopathy
title_short Host protein manipulation as a mechanism in viral cardiomyopathy
title_full Host protein manipulation as a mechanism in viral cardiomyopathy
title_fullStr Host protein manipulation as a mechanism in viral cardiomyopathy
title_full_unstemmed Host protein manipulation as a mechanism in viral cardiomyopathy
title_sort host protein manipulation as a mechanism in viral cardiomyopathy
publisher University of British Columbia
publishDate 2012
url http://hdl.handle.net/2429/43095
work_keys_str_mv AT wongtseyuan hostproteinmanipulationasamechanisminviralcardiomyopathy
_version_ 1718583472809836544