Peripheral plasticity after spinal cord injury and ramifications for cardiovascular function

Cardiovascular problems create life-long challenges for people living with spinal cord injury (SCI). When SCI occurs above the sixth thoracic segment (T6), it isolates spinal circuitry governing the critical splanchnic vascular bed, and creates the conditions for autonomic dysreflexia (AD), episodic...

Full description

Bibliographic Details
Main Author: Ramer, Leanne Margaret
Language:English
Published: University of British Columbia 2012
Online Access:http://hdl.handle.net/2429/42136
id ndltd-UBC-oai-circle.library.ubc.ca-2429-42136
record_format oai_dc
spelling ndltd-UBC-oai-circle.library.ubc.ca-2429-421362018-01-05T17:25:44Z Peripheral plasticity after spinal cord injury and ramifications for cardiovascular function Ramer, Leanne Margaret Cardiovascular problems create life-long challenges for people living with spinal cord injury (SCI). When SCI occurs above the sixth thoracic segment (T6), it isolates spinal circuitry governing the critical splanchnic vascular bed, and creates the conditions for autonomic dysreflexia (AD), episodic hypertension instigated by sensory stimulation below the level of SCI. Most experiments investigating mechanisms of AD describe plasticity in the injured spinal cord. In this dissertation, I examined injury-induced changes at two peripheral loci critical to AD, the dorsal root ganglion (DRG) and mesenteric arteries. I used adult Wistar rats and performed complete transection SCI at T3 or T10: while both injuries produce hind limb paralysis, only the former is accompanied by AD. In the DRG, I found that T3 SCI triggered somatic hypertrophy in a specific subset of nociceptors, those expressing the capsaicin receptor (TRPV1). SCI-induced hypertrophy occurred in DRGs caudal to SCI and was most pronounced in lumbosacral ganglia. Intriguingly, SCI-induced hypertrophy was much more pronounced after T3 than T10 SCI. Importantly, when I used capsaicin to selectively eliminate TRPV1-positive projections to the lumbosacral spinal cord, the severity of AD was dramatically reduced. Next I examined glial, immune and vascular constituents of the lumbar DRG following SCI. I found that T3, but not T10 SCI activated satellite cells and macrophages in the DRG, and provoked mast cell accumulation in the adjacent spinal nerve. SCI at both levels promoted angiogenesis in the DRG and ingrowth of sympathetic ganglionic axons. In the superior mesenteric artery (SMA), I used in vitro myography to examine the role of cyclooxygenase (COX) enzymes in phenylephrine (PE) hyper-responsiveness after T3 SCI. I found that PE hypersensitivity was reversed by specific inhibitors of COX-2 and that COX-2 was upregulated in the SMA after T3 SCI. In an additional set of experiments, I found that recurrent episodes of AD, induced intentionally during recovery from SCI, exacerbated PE hyper-responsiveness in the SMA. These findings identify SCI-induced changes in the periphery that may contribute to AD by augmenting sensory input to the spinal cord or sympathetically-mediated vasoconstriction. These SCI-provoked effects may represent new therapeutic targets to treat AD. Science, Faculty of Zoology, Department of Graduate 2012-04-20T17:10:46Z 2012-04-20T17:10:46Z 2012 2012-05 Text Thesis/Dissertation http://hdl.handle.net/2429/42136 eng Attribution-ShareAlike 3.0 Unported http://creativecommons.org/licenses/by-sa/3.0/ University of British Columbia
collection NDLTD
language English
sources NDLTD
description Cardiovascular problems create life-long challenges for people living with spinal cord injury (SCI). When SCI occurs above the sixth thoracic segment (T6), it isolates spinal circuitry governing the critical splanchnic vascular bed, and creates the conditions for autonomic dysreflexia (AD), episodic hypertension instigated by sensory stimulation below the level of SCI. Most experiments investigating mechanisms of AD describe plasticity in the injured spinal cord. In this dissertation, I examined injury-induced changes at two peripheral loci critical to AD, the dorsal root ganglion (DRG) and mesenteric arteries. I used adult Wistar rats and performed complete transection SCI at T3 or T10: while both injuries produce hind limb paralysis, only the former is accompanied by AD. In the DRG, I found that T3 SCI triggered somatic hypertrophy in a specific subset of nociceptors, those expressing the capsaicin receptor (TRPV1). SCI-induced hypertrophy occurred in DRGs caudal to SCI and was most pronounced in lumbosacral ganglia. Intriguingly, SCI-induced hypertrophy was much more pronounced after T3 than T10 SCI. Importantly, when I used capsaicin to selectively eliminate TRPV1-positive projections to the lumbosacral spinal cord, the severity of AD was dramatically reduced. Next I examined glial, immune and vascular constituents of the lumbar DRG following SCI. I found that T3, but not T10 SCI activated satellite cells and macrophages in the DRG, and provoked mast cell accumulation in the adjacent spinal nerve. SCI at both levels promoted angiogenesis in the DRG and ingrowth of sympathetic ganglionic axons. In the superior mesenteric artery (SMA), I used in vitro myography to examine the role of cyclooxygenase (COX) enzymes in phenylephrine (PE) hyper-responsiveness after T3 SCI. I found that PE hypersensitivity was reversed by specific inhibitors of COX-2 and that COX-2 was upregulated in the SMA after T3 SCI. In an additional set of experiments, I found that recurrent episodes of AD, induced intentionally during recovery from SCI, exacerbated PE hyper-responsiveness in the SMA. These findings identify SCI-induced changes in the periphery that may contribute to AD by augmenting sensory input to the spinal cord or sympathetically-mediated vasoconstriction. These SCI-provoked effects may represent new therapeutic targets to treat AD. === Science, Faculty of === Zoology, Department of === Graduate
author Ramer, Leanne Margaret
spellingShingle Ramer, Leanne Margaret
Peripheral plasticity after spinal cord injury and ramifications for cardiovascular function
author_facet Ramer, Leanne Margaret
author_sort Ramer, Leanne Margaret
title Peripheral plasticity after spinal cord injury and ramifications for cardiovascular function
title_short Peripheral plasticity after spinal cord injury and ramifications for cardiovascular function
title_full Peripheral plasticity after spinal cord injury and ramifications for cardiovascular function
title_fullStr Peripheral plasticity after spinal cord injury and ramifications for cardiovascular function
title_full_unstemmed Peripheral plasticity after spinal cord injury and ramifications for cardiovascular function
title_sort peripheral plasticity after spinal cord injury and ramifications for cardiovascular function
publisher University of British Columbia
publishDate 2012
url http://hdl.handle.net/2429/42136
work_keys_str_mv AT ramerleannemargaret peripheralplasticityafterspinalcordinjuryandramificationsforcardiovascularfunction
_version_ 1718583291378925568